E-MapReduce中Spark 2.x读写MaxCompute数据

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 最新的`aliyun-emapreduce-sdk`将`MaxCompute`数据以`DataSource`的方式接入Spark 2.x,用户可以使用类似Spark 2.x中读写`json/parquet/csv`的方式来访问MaxCompute.

最新的aliyun-emapreduce-sdkMaxCompute数据以DataSource的方式接入Spark 2.x,用户可以使用类似Spark 2.x中读写json/parquet/csv的方式来访问MaxCompute.

0. DataSource

a) DataSource提供了一种插件式的外部数据接入SparkSQL的方式,数据源只要实现相应的DataSource API即可以整合进SparkSQL,它的特点如下:

  • 通过DataSet/DataFrame/sparkSQLText等标准方式来访问数据源
  • SparkSQL引擎优化
  • scala语言接入后,Spark支持的其它语言也可以进行访问,如pyspark等

    Spark 2.x内置支持的数据源:

    • json
    • csv
    • parquet
    • orc
    • text
    • jdbc

    Spark 2.x 访问数据源示例:

    b) 读数据

    val df = spark.read.json("pathToJson")
    
    // 提供schema信息
    val schemaType = StructType(Seq(
      StructField("year", IntegerType, nullable = true))
    spark.read.schema(schemaType)json("pathToJson")
    
    // 带一些参数设置,如csv的分隔符等
    spark.read.option("header", "false").option("sep", ",").csv("pathToCsv"")
    
    // load api, 等同于spark.read.json("pathToLoad")
    spark.read.format("json").load("pathToLoad")
    
    // sql方式访问
    df.createOrReplaceTempView("t")
    spark.sql("select * from t")
    

    c) 写数据

    ```
    val df = Seq(1, 2, 3).toDF("a")
    df.write.json("jsonWritePath")

    // 等同上面写法
    df.write.format("json").save("jsonWritePath")

 // 带参数
 df.write
   .option("header", "true")
   .option("compression", "gZiP")
   .csv("csvWritePath")

 // 路径存在,则覆盖
 df.write.mode("overwrite").json("jsonWritePath")
 **d)**sparkSQLText using DataSource
  spark.sql("create table t(a string) using json")
  spark.sql("insert int table t select 1")
  spark.sql("select * from t")
  ...

#### 1. MaxCompute以DataSource接入Spark 2.x

  如上介绍了DataSource的特点以及读写方式,MaxCompute作为一个数据源,通过E-MapReduce的`aliyun-emapreduce-sdk`也可以通过上述方式来访问。

##### 1.1.  aliyun-emapreduce-sdk

  [Git地址](https://github.com/aliyun/aliyun-emapreduce-sdk) 

  **branch: master-2.x**

#### 1.2 SparkSQL读写MaxCompute

###### a) option参数设置

访问MaxCompute表中的数据,需要一些参数,如下:

parameter | optional | value
------------ | ------------- | ------------
odpsUrl | No  | 
tunnelUrl | No  | 
accessKeySecret | No  | 阿里云accessKeySecret
accessKeyId | No  | 阿里云accessKeyId
project | No  | MaxCompute项目空间
table | No  | MaxCompute表名
numPartitions | Yes  | 表的Partition个数,默认 1
partitionSpec | Yes  | 分区信息,如pt=xxx,多个用逗号分开pt=xxx,dt=xxx
allowCreatNewPartition | Yes  | 分区不存在是否创建,默认 false

######b) 写数据

* MaxCompute中必须已经存在表()),若没有需要去MaxCompute控制台进行创建
* 将`DataFrame`中的数据写入MaxCompute的表中

val df = Seq(("Hello", "E-MapReduce")).toDF("a","b")
df.write.format("org.apache.spark.aliyun.maxcompute.datasource")
.option("odpsUrl", ")
.option("tunnelUrl"
.option("table", "t")
.option("project", "test_odpss")
.option("accessKeyId", "your accessKeyId")
.option("accessKeySecret", "your accessKeySecret")
.mode("overwrite") //覆盖写
.save()

case class MyClass(a: String, b: String)
val df1 = Seq(MyClass("Hello", "World")).toDF
df1.write.format("org.apache.spark.aliyun.maxcompute.datasource")
.option("odpsUrl")
.option("tunnelUrl"
.option("table", "t")
.option("project", "test_odpss")
.option("accessKeyId", "your accessKeyId")
.option("accessKeySecret", "your accessKeySecret")
.mode("append") //append追加
.save()

// 写分区表 建表:create table t1(a string) partitioned by(b string)
val df2 = Seq("E-MapReduce").toDF("a") // 不包含分区列
df2.write.format("org.apache.spark.aliyun.maxcompute.datasource")
.option("odpsUrl")
.option("tunnelUrl")
.option("table", "t1")
.option("project", "test_odpss")
.option("partitionSpec","b='Hello'") // 分区描述
.option("allowCreatNewPartition","true") //若分区不存在,是否创建
.option("accessKeyId", "your accessKeyId")
.option("accessKeySecret", "your accessKeySecret")
.mode("append") //append追加
.save()

**备注:** 
>
DataFrame的列名和类型必须和MaxCompute的表中一致
>
`不支持`spark.write.parititonBy
>
 `不支持`动态分区

* MaxCompute控制台查询表数据进行验证

序号 | a | b
------------ | ------------- | ------------
1 | Hello  | E-MapReduce |
2|Hello | World

###### c) 读数据
* 从上述表中读取数据到`DataFrame`

val df = spark
.read
.format("org.apache.spark.aliyun.maxcompute.datasource")
.option("odpsUrl")
.option("tunnelUrl")
.option("table", "t")
.option("project", "test_odpss")
.option("accessKeyId", "your accessKeyId")
.option("accessKeySecret", "your accessKeySecret")
.load()

df.show(false)

+-----+-----------+
|a |b |
+-----+-----------+
|Hello|E-MapReduce|
|Hello|World |
+-----+-----------+

// 读出为DataFrame后可进行DataFrame的各种操作,如join
val df1 = Seq(("Hello", "AliYun")).toDF("a", "c")
df.join(df1, "a").show(false)

+-----+-----------+-------+
|a |b |c |
+-----+-----------+-------+
|Hello|E-MapReduce|AliYun|
|Hello|World |AliYun|
+-----+-----------+-------+

// 也可注册为Spark的临时表
df.createOrReplaceTempView("test_t")
spark.sql("select * from test_t").show(false)

df1.createOrReplaceTempView("test_t_1")
spark.sql("select * from test_t join test_t_1 on test_t.a = test_t_1.a ")

// 读分区表 建表:create table t2(a string) partitioned by(b string)
spark.read.format("org.apache.spark.aliyun.maxcompute.datasource")
.option("odpsUrl")
.option("tunnelUrl")
.option("table", "t2") // table t2
.option("project", "test_odpss")
.option("partitionSpec","b='Hello'") // 分区描述
.option("accessKeyId", "your accessKeyId")
.option("accessKeySecret", "your accessKeySecret")
.save()

+-----------+
|a |
+-----------+
|E-MapReduce|
+-----------+

```

d) sparkSQLText
  • 不支持在sparkSQLText直接对MaxCompute表进行相关操作
  • 可以通过上述读数据的方式使用DataFrame注册成临时表的方式,进行相关操作(insert不支持)
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
166 79
|
5月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
370 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
缓存 分布式计算 资源调度
Spark 与 MapReduce 的 Shuffle 的区别?
MapReduce 和 Spark 在 Shuffle 过程中有显著区别。MapReduce 采用两阶段模型,中间数据写入磁盘,I/O 开销大;而 Spark 使用基于内存的多阶段执行模型,支持操作合并和内存缓存,减少 I/O。Spark 的 RDD 转换优化减少了 Shuffle 次数,提升了性能。此外,Spark 通过 lineage 实现容错,资源管理更灵活,整体大数据处理效率更高。
|
5月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
269 6
|
5月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
298 2
|
5月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
254 1
|
5月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
5月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
141 1
|
6月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
179 1
|
6月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
189 0
下一篇
oss创建bucket