实战算法篇:设计短域名系统,将长URL转化成短的URL.

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 小米介绍了一种实用的短域名系统设计,用于将冗长的URL转化为简短链接。短链接不仅节省空间,便于分享,还能支持数据分析。系统通过唯一编号结合62进制转换生成短标识,并利用如Redis这样的数据库存储长链接与短标识的映射关系。最后,通过302重定向实现用户访问时的长链接恢复。这一方案适用于多种场景,有效提升用户体验与数据追踪能力。



大家好,我是小米,今天我们来聊聊一个非常有趣且实用的技术:如何设计一个短域名系统,把长长的URL转化成短短的链接!这个话题在日常开发中非常常见,比如我们经常在社交媒体上看到的那些精简的短链接,背后就是类似的系统在工作。

短域名系统的需求背景

我们为什么需要短域名系统呢?主要有以下几个原因:

  • 节省空间:在推特等字符有限的平台上,短链接可以节省宝贵的字符空间。
  • 易于分享:短链接更容易记忆和分享。
  • 分析与统计:通过短链接,可以对访问量、来源等进行统计分析。

设计思路概述

短域名系统的设计核心思路是将一个长URL映射到一个唯一的短链接,然后通过这个短链接访问时,能够还原出原始的长URL,并实现跳转。具体步骤如下:

  1. 生成短链接:使用一个放号器(计数器)为每一个长URL生成一个唯一的编号,然后将这个编号转换为62进制,得到短链接的标识。
  2. 存储映射关系:将短链接标识与长URL的映射关系存储在数据库中(例如Redis或Memcache)。
  3. 实现重定向:用户访问短链接时,根据短链接标识查找对应的长URL,并实现302重定向。

放号器与62进制转换

首先,我们需要一个放号器,从0开始,每次有新的短链接生成请求时,放号器的值就递增一次。接下来,将这个值转换为62进制表示。为什么是62进制?因为我们使用了a-z、A-Z0-9,正好62个字符来组成我们的短链接标识。

62进制转换的实现

我们可以使用以下Java代码实现将数字转换为62进制:

在这个例子中,放号器的值是10001,转换为62进制后得到的短链接标识是sBc

短链接生成与存储

短链接生成的核心是将62进制标识与短链接服务器的域名结合,例如:t.cn/sBc。一旦生成了这个短链接,我们需要将其与对应的长URL存储在数据库中,以便后续查询。

这里我们可以使用Redis或Memcache等K-V存储系统。每当有一个新的短链接生成时,我们将其存储为键值对:

  • 键:短链接标识(例如sBc
  • 值:原始长URL

数据库存储示例

在这个示例中,我们使用Redis来存储短链接与长链接的映射。通过storeUrlMapping 方法,我们将短链接标识 sBc 和原始长URL存储在Redis中。然后可以通过 getLongUrl 方法来检索原始的长URL。

实现302重定向

当用户访问短链接时,我们需要根据短链接标识从数据库中查找对应的长URL,并通过HTTP 302状态码实现重定向。

302重定向的实现

在Java中,我们可以使用Servlet来实现这个功能。以下是一个简单的Servlet实现:

这个Servlet会根据用户请求的短链接标识,从数据库中查找对应的长URL,并使用response.sendRedirect(longUrl)实现302重定向。如果没有找到对应的长URL,返回404错误。

END

以上,我们设计了一个简单而有效的短域名系统:

  1. 生成短链接:通过放号器和62进制转换,生成唯一的短链接标识。
  2. 存储映射关系:使用Redis或其他K-V存储系统,将短链接标识与长URL的映射关系存储起来。
  3. 实现重定向:通过Servlet实现短链接到长链接的302重定向。

这个系统可以在许多场景中使用,特别是需要生成大量短链接,并且需要快速响应的应用场景。当然,实际应用中还需要考虑更多的细节,比如短链接的冲突处理、安全性、可扩展性等。希望这篇文章对大家有所帮助,如果你有更多问题或想法,欢迎留言讨论!

我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

目录
打赏
0
9
9
1
241
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
138 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
357 55
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
28 15
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
133 66
|
27天前
|
内网监控系统之 Go 语言布隆过滤器算法深度剖析
在数字化时代,内网监控系统对企业和组织的信息安全至关重要。布隆过滤器(Bloom Filter)作为一种高效的数据结构,能够快速判断元素是否存在于集合中,适用于内网监控中的恶意IP和违规域名筛选。本文介绍其原理、优势及Go语言实现,提升系统性能与响应速度,保障信息安全。
30 5
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
53 7
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
56 6
【AI系统】QNNPack 算法

热门文章

最新文章