基于EM期望最大化算法的GMM模型参数估计matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。

1.程序功能描述
基于EM期望最大化算法的GMM模型参数估计是一种常用的统计学习方法,用于估计高斯混合模型(Gaussian Mixture Model,GMM)的参数。仿真输出EM算法的迭代收敛曲线,并得到GMM的参数估计结果。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

b204d747cb3f4972d75b5e6b66ab7e68_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
bb29f1829fd3ccff5b2a12d3bcc89b9e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

mu1_est    = mu_ini(1,:)
mu2_est    = mu_ini(2,:)
sgm1_est   = sgm_ini{1}
sgm2_est   = sgm_ini{2}


figure(1)
subplot(133);
hold off;
plot(X1(:,1), X1(:,2), 'g.');
hold on;
plot(X2(:,1), X2(:,2), 'y.');

% 创建网格点坐标  
[A,B] = meshgrid(u, u);
Gridx = [A(:),B(:)];

% 计算每个网格点上的高斯响应  
z1_est = func_GMMDist(Gridx, mu1_est, sgm1_est);
z2_est = func_GMMDist(Gridx, mu2_est, sgm2_est);

% 将响应重新整形为2D网格,以便使用contour进行绘制  
Y1_est = reshape(z1_est, Gsize, Gsize);
Y2_est = reshape(z2_est, Gsize, Gsize);
contour(u, u, Y1_est, 3);
contour(u, u, Y2_est, 3);
daspect([1 1 1])
title(['EM估计GMM模型']);
% 绘制原始中心点和新的中心点 
plot(mu1_est(1),mu1_est(2),'r.')  
plot(mu2_est(1),mu2_est(2),'r.') 

figure;
plot(err,'b-o');
xlabel('EM迭代次数');
ylabel('EM估计误差');
grid on;
10

4.本算法原理
基于EM期望最大化算法的GMM模型参数估计是一种常用的统计学习方法,用于估计高斯混合模型(Gaussian Mixture Model,GMM)的参数。

4.1 GMM模型
GMM模型是一种概率密度函数,用于描述子群体的混合体。假设数据集X包含N个样本,每个样本都是D维向量。GMM模型假设数据集由K个高斯分布混合而成,每个高斯分布称为一个组件(component)。GMM模型的概率密度函数可以表示为:

93b9070c8b40bb606e6a9f7fd96ffdcc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 EM算法
EM算法全称最大期望算法(Expectation-maximization algorithm,翻译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。 在GMM模型中,每个样本所属的组件是隐变量。EM算法通过迭代计算期望(E步)和最大化(M步)来估计模型参数。

STEP 1: 计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值。

STEP 2: 最大化(M),最大化E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。

4.3 算法流程
初始化模型参数:随机初始化每个组件的权重、均值和协方差矩阵。
E步:根据当前的模型参数,计算每个样本属于每个组件的后验概率。
M步:根据E步计算得到的后验概率,更新模型参数。
判断是否收敛:如果模型参数收敛,则停止迭代;否则,返回步骤2继续迭代。
输出模型参数:输出最终的模型参数,包括每个组件的权重、均值和协方差矩阵。

相关文章
|
4天前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
15 1
|
2天前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
7 0
|
2天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
104 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
1月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
75 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
1月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
59 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
4月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)