基于EM期望最大化算法的GMM模型参数估计matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。

1.程序功能描述
基于EM期望最大化算法的GMM模型参数估计是一种常用的统计学习方法,用于估计高斯混合模型(Gaussian Mixture Model,GMM)的参数。仿真输出EM算法的迭代收敛曲线,并得到GMM的参数估计结果。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

b204d747cb3f4972d75b5e6b66ab7e68_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
bb29f1829fd3ccff5b2a12d3bcc89b9e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

mu1_est    = mu_ini(1,:)
mu2_est    = mu_ini(2,:)
sgm1_est   = sgm_ini{1}
sgm2_est   = sgm_ini{2}


figure(1)
subplot(133);
hold off;
plot(X1(:,1), X1(:,2), 'g.');
hold on;
plot(X2(:,1), X2(:,2), 'y.');

% 创建网格点坐标  
[A,B] = meshgrid(u, u);
Gridx = [A(:),B(:)];

% 计算每个网格点上的高斯响应  
z1_est = func_GMMDist(Gridx, mu1_est, sgm1_est);
z2_est = func_GMMDist(Gridx, mu2_est, sgm2_est);

% 将响应重新整形为2D网格,以便使用contour进行绘制  
Y1_est = reshape(z1_est, Gsize, Gsize);
Y2_est = reshape(z2_est, Gsize, Gsize);
contour(u, u, Y1_est, 3);
contour(u, u, Y2_est, 3);
daspect([1 1 1])
title(['EM估计GMM模型']);
% 绘制原始中心点和新的中心点 
plot(mu1_est(1),mu1_est(2),'r.')  
plot(mu2_est(1),mu2_est(2),'r.') 

figure;
plot(err,'b-o');
xlabel('EM迭代次数');
ylabel('EM估计误差');
grid on;
10

4.本算法原理
基于EM期望最大化算法的GMM模型参数估计是一种常用的统计学习方法,用于估计高斯混合模型(Gaussian Mixture Model,GMM)的参数。

4.1 GMM模型
GMM模型是一种概率密度函数,用于描述子群体的混合体。假设数据集X包含N个样本,每个样本都是D维向量。GMM模型假设数据集由K个高斯分布混合而成,每个高斯分布称为一个组件(component)。GMM模型的概率密度函数可以表示为:

93b9070c8b40bb606e6a9f7fd96ffdcc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 EM算法
EM算法全称最大期望算法(Expectation-maximization algorithm,翻译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。 在GMM模型中,每个样本所属的组件是隐变量。EM算法通过迭代计算期望(E步)和最大化(M步)来估计模型参数。

STEP 1: 计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值。

STEP 2: 最大化(M),最大化E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。

4.3 算法流程
初始化模型参数:随机初始化每个组件的权重、均值和协方差矩阵。
E步:根据当前的模型参数,计算每个样本属于每个组件的后验概率。
M步:根据E步计算得到的后验概率,更新模型参数。
判断是否收敛:如果模型参数收敛,则停止迭代;否则,返回步骤2继续迭代。
输出模型参数:输出最终的模型参数,包括每个组件的权重、均值和协方差矩阵。

相关文章
|
18天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
18天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
111 68
|
27天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
26天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
25天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
188 80
|
28天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
28天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。