基于MPPT最大功率跟踪算法的光伏并网发电系统simulink仿真

简介: 本项目采用Simulink仿真构建基于MPPT的最大功率跟踪光伏并网发电系统,自行建立PV模型而非使用内置模块。系统包含MPPT控制器、PI控制器、锁相环及逆变器等,实现光伏阵列在各种条件下高效运行于最大功率点。仿真结果显示光伏并网输出的电流(Ipv)、电压(Upv)及功率(Ppv)波形。通过闭环控制,系统持续调整以维持最佳功率输出,有效提升光伏系统的整体效能和环境适应性。

1.课题概述
基于MPPT最大功率跟踪算法的光伏并网发电系统simulink仿真,包括PV模型建模(不使用simulink自带的PV模块,根据公式进行建模),MPPT最大功率控制器,PI控制器,锁相环,逆变器等等。输出系统的收敛曲线。

2.系统仿真结果
上面三个波形分别表示光伏并网输出的Ipv,Upv和Ppv三个输出变量。

1.png
2.png
3.png

3.核心程序与模型
版本:MATLAB2022a

4.png

     这里,IGBT的主要功能为当电感电流断续的时候,IGBT的电流达到0后不会马上开通,由计时器在0.2ms时产生高电平触发IGBT再次开通,电感再次导通后产生上升沿,使定时器复位重新 开始计数。

33de2c6ed1afb1d57724c1f42d778b11_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

02_007m

4.系统原理简介
光伏发电作为一种绿色、可再生的能源转换方式,在现代能源结构中占据着越来越重要的地位。为了提高光伏发电系统的效率,最大功率点跟踪(MPPT)算法被广泛应用于光伏并网发电系统中。基于MPPT最大功率跟踪算法的光伏并网发电系统,是通过调节光伏阵列的输出电压或电流,使得光伏阵列始终工作在最大功率点(MPP)附近,从而实现光伏阵列的最大功率输出。MPPT算法能够实时跟踪光伏阵列的最大功率点,确保光伏系统在不同环境条件下都能获得最高的能量转换效率。

光伏阵列的输出功率公式

P = I * V

其中,P为光伏阵列的输出功率,I为光伏阵列的输出电流,V为光伏阵列的输出电压。

光伏阵列的模型原理如下:

ab76139e7396f7ab67eb79d5b1b89dc7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

最大功率点跟踪(MPPT)算法的数学模型

  常用的MPPT算法包括摄动观察法(P&O)、增量电导法(Incremental Conductance)等。以摄动观察法为例,其数学模型可表示为:

ΔP = P(k) - P(k-1)

ΔV = V(k) - V(k-1)

  其中,ΔP和ΔV分别为相邻两个时刻的功率变化量和电压变化量。当ΔP和ΔV的符号相同时,表示光伏阵列工作在最大功率点的左侧,需要增加电压;当ΔP和ΔV的符号不同时,表示光伏阵列工作在最大功率点的右侧,需要减小电压。通过不断调整电压,使得ΔP和ΔV的符号相同,最终实现最大功率点的跟踪。

基于MPPT最大功率跟踪算法的光伏并网发电系统实现过程如下:

光伏阵列输出电压和电流经过采样电路,转换为适合处理的电压信号。
控制芯片对采样得到的电压信号进行处理,计算出当前时刻的光伏阵列输出功率。
控制芯片根据MPPT算法,判断出当前时刻光伏阵列的工作状态,并生成相应的控制信号。
控制信号经过驱动电路放大后,驱动DC/DC变换器调整光伏阵列的输出电压或电流。
调整后的光伏阵列输出电压和电流再次经过采样电路,形成一个闭环控制系统,实现最大功率点的实时跟踪。
系统的设计根据如下流程图进行:

231c1d1bc5019af49f6f49dcc38bbda0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于MPPT最大功率跟踪算法的光伏并网发电系统具有以下优点:

提高光伏发电系统的效率:通过实时跟踪最大功率点,确保光伏阵列在不同环境条件下都能获得最高的能量转换效率。
增强系统的适应性:MPPT算法能够自适应地调整光伏阵列的输出电压或电流,使得系统能够适应不同光照和温度条件下的工作环境。
简化系统控制策略:通过闭环控制系统实现最大功率点的实时跟踪,无需复杂的控制策略和调整过程。

相关文章
|
1天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
4天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
7天前
|
算法
基于模糊控制算法的倒立摆控制系统simulink建模与仿真
本课题针对倒立摆模型,使用MATLAB2022a进行模糊控制器Simulink建模,通过调整小车推力控制摆角,实现系统的稳定。倒立摆作为非线性控制的经典案例,利用模糊控制策略提高了系统的鲁棒性和自适应性,确保了小车在特定位置的稳定停留。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
6天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
12天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
7天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。

热门文章

最新文章