【机器学习】机器学习中的人工神经元模型有哪些?

简介: 本文概述了多种人工神经元模型,包括线性神经元、非线性神经元、自适应线性神经元(ADALINE)、感知机神经元、McCulloch-Pitts神经元、径向基函数神经元(RBF)、径向基概率神经元(RBPNN)、模糊神经元、自组织映射神经元(SOM)、CMAC神经元、LIF神经元、Izhikevich神经元、Spiking神经元、Swish神经元和Boltzmann神经元,各自的特点和应用领域,为理解神经网络中神经元的多样性和适应性提供了基础。
  1. 线性神经元
    线性神经元(Linear Neuron)是一种基本的人工神经元模型,特点是其输出是输入的线性组合。线性神经元是神经网络中最简单的一种形式,适用于处理线性关系的问题。数学模型如下,

$$ y = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^n w_i x_i + b $$
在这里插入图片描述

  1. 非线性神经元
  • 引入非线性激活函数,如Sigmoid、Tanh、ReLU、ELU、PReLU或者Leak ReLU,以允许网络学习更复杂的模式。
    在这里插入图片描述

  • 应用现代神经网络的普遍使用。

  1. 自适应线性神经元(Adaptive Linear Neuron, Adaline)
  • 自适应线性神经元(Adaptive Linear Neuron,简称ADALINE)是一种早期的人工神经网络模型,由Bernard Widrow和Ted Hoff在1960年提出。ADALINE是感知器(Perceptron)的一个扩展,但使用线性激活函数,并且采用梯度下降法来调整权重。这使得它在处理线性可分问题和线性回归任务上非常有效。ADALINE的基本结构和感知器类似,但其激活函数是线性的。这意味着ADALINE在输出层不会应用阶跃函数,而是直接输出加权和。ADALINE的数学模型如和线性神经元一样,如下
    • 计算加权和:将输入信号和权重进行线性组合,再加上偏置项:
      $$y = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^n w_i x_i + b $$

但是线性神经元 通常用作描述线性回归模型,可以使用不同的优化算法。ADALINE 明确采用梯度下降法,并且其主要创新在于使用均方误差作为损失函数来调整权重。
在这里插入图片描述

  1. 感知机神经元(Perceptron Neuron)
  • Perceptron模型是由弗兰克·罗森布拉特(Frank Rosenblatt)在1958年提出的,是对McCulloch-Pitts神经元模型的扩展。Perceptron神经元的结构与McCulloch-Pitts神经元相似,但具有更灵活的学习能力。输入信号可以是连续值而不是二进制。
    数学模型为
    $$ y = \begin{cases} 1 & \text{if } \sum\_{i=1}^n w_i x_i + b \geq 0 \\\ 0 & \text{otherwise} \end{cases} $$
    在这里插入图片描述
  1. McCulloch-Pitts神经元
  • McCulloch-Pitts神经元是一个二进制阈值设备,输入是一组二进制输入信号 $x_1, x_2, ..., x_n $​,每个输入要么是0要么是1。这个神经元的输出 y是通过以下步骤计算的:
    • 计算输入信号和权重的加权和:$ S = \sum_{i=1}^n w_i x_i $​。
    • 将加权和与阈值进行比较:如果 S≥θ,则输出 y = 1;否则输出y = 0。
      数学模型为
      $$ y = \begin{cases} 1 & \text{if } \sum_{i=1}^n w_i x_i \geq \theta \\\ 0 & \text{otherwise} \end{cases} ​$$

在这里插入图片描述

  1. 径向基函数神经元(Radial Basis Function, RBF Neuron)
  • 使用径向基函数作为激活函数,能够对输入空间进行非线性映射。
  • 应用函数逼近、模式识别。
  1. 径向基概率神经元(Radial Basis Probabilistic Neuron, RBPNN)
  • 结合了RBF神经元和概率模型,用于分类和回归任务。
  • 应用统计模式识别。
  1. 模糊神经元
  • 使用模糊逻辑作为激活函数,能够处理不确定性和模糊性。
  • 应用模糊控制系统。
  1. 自组织映射神经元(Self-Organizing Map, SOM Neuron)
  • 一种无监督学习的神经元,能够将高维输入数据映射到低维空间。
  • 应用数据可视化、聚类分析。
  1. CMAC神经元(Cerebellar Model Articulation Controller, CMAC Neuron)
  • 一种局部学习的神经元,常用于控制理论。
  • 应用机器人控制、实时系统。
  1. LIF神经元(Leaky Integrate-and-Fire Neuron)
  • 一种生物物理模型,模拟了生物神经元的放电特性。
  • 应用生物神经网络模拟。
    在这里插入图片描述
  1. Izhikevich神经元
    Izhikevich神经元模型是由Eugene Izhikevich在2003年提出的,它结合了生物学上的真实性和计算上的效率。该模型能够捕捉到多种生物神经元的复杂放电模式,同时计算复杂度较低,使其在大规模神经网络模拟中非常有用。该模型使用两个变量 v 和 u 来描述神经元的动态行为:
  • v 表示膜电位。
  • u 表示恢复变量,捕捉膜电位的复原机制。

模型的微分方程为:

$$ \frac{dv}{dt} = 0.04v^2 + 5v + 140 - u + I $$

$$\frac{du}{dt} = a(bv - u) $$

其中, I 是外部输入电流, a、 b、 c 和 d是模型参数,用于调整神经元的放电特性。放电后的重置条件为:
当 v≥30 mV 时:
v ← c
u ← u + d

  1. Spiking神经元
  • 模拟生物神经元的尖峰放电行为,是神经形态计算的基础。
  • 应用神经形态工程、生物启发的计算模型。
    在这里插入图片描述
  1. Swish神经元
  • Swish是一种自门控的激活函数,它在不同的输入下有不同的行为,表现出非单调特性。
    在这里插入图片描述
  1. Boltzmann神经元
  • Boltzmann 神经元是一种在 Boltzmann 机(Boltzmann Machine)中使用的神经元模型。Boltzmann 神经元是二值的,即其状态只能是 0 或 1。它们通过概率性规则来更新状态,这些规则依赖于其他神经元的状态和连接权重。Boltzmann 神经元的状态更新遵循以下概率性规则:

    • 神经元 i 的状态 si​ 可以是 0 或 1。
    • 神经元 i 的状态以一定的概率$ P(s_i = 1)$ 更新,这个概率取决于当前网络的状态和神经元的输入信号。

该概率通常使用 logistic 函数来表示:

$$ P(s_i = 1) = \frac{1}{1 + \exp(-E_i)} $$

其中 Ei​ 是神经元 i 的输入信号,总和来自其他神经元的输入加上偏置项:

$$E_i = \sum_{j} w_{ij} s_j + b_i $$

  • $ w_{ij} $是从神经元 j 到神经元 i 的连接权重。
  • $ b_i $​ 是神经元 i 的偏置项。
  • $ s_j $​ 是神经元 j 的状态。
目录
相关文章
|
25天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
58 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
28天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
156 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
17天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
61 18
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
14天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
36 4
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
125 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
65 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
99 8