LeetCode初级算法题:反转链表+统计N以内的素数+删除排序数组中的重复项Java详解

简介: LeetCode初级算法题:反转链表+统计N以内的素数+删除排序数组中的重复项Java详解

1 反转链表

1.1 题目

反转链表

反转一个单链表

输入: 1->2->3->4->5

输出: 5->4->3->2->1

1.2 解题思路

解法1:迭代

迭代,重复某一过程,每一次处理结果作为下一次处理的初始值,这些初始值类似于状态、每次处理都会改变状态、直至到达最终状态

从前往后遍历链表,将当前节点的next指向上一个节点,因此需要一个变量存储上一个节点prev,当前节点处理完需要寻找下一个节点,因此需要一个变量保存当前节点curr,处理完后要将当前节点赋值给prev,并将next指针赋值给curr,因此需要一个变量提前保存下一个节点的指针next

1、将下一个节点指针保存到next变量 next = curr.next

2、将下一个节点的指针指向prev,curr.next = prev

3、准备处理下一个节点,将curr赋值给prev

4、将下一个节点赋值为curr,处理一个节点

解法2:递归

递归:以相似的方法重复,类似于树结构,先从根节点找到叶子节点,从叶子节点开始遍历

大的问题(整个链表反转)拆成性质相同的小问题(两个元素反转)curr.next.next = curr

将所有的小问题解决,大问题即解决

只需每个元素都执行curr.next.next = curr,curr.next = null两个步骤即可

为了保证链不断,必须从最后一个元素开始

1.3 题解代码

package algorithm.leetcode;

public class ReverseList {
    static class ListNode{
        int val;
        ListNode next;
        public ListNode(int val, ListNode next) {
            this.val = val;
            this.next = next;
        }
    }
    public static ListNode iterate(ListNode head){
        ListNode prev = null,curr,next;
        curr = head;
        while(curr != null){
            next = curr.next;
            curr.next = prev;
            prev = curr;
            curr = next;
        }
        return prev;
    }
    public static ListNode recursion(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }
        ListNode newHead = recursion(head.next);
        head.next.next = head;
        head.next = null;
        return newHead;
    }
    public static void main(String[] args) {
        ListNode node5 = new ListNode(5,null);
        ListNode node4 = new ListNode(4,node5);
        ListNode node3 = new ListNode(3,node4);
        ListNode node2 = new ListNode(2,node3);
        ListNode node1 = new ListNode(1,node2);
        //ListNode node = iterate(node1);
        ListNode node_1 = recursion(node1);
        System.out.println(node_1);
    }
}

2 统计N以内的素数

2.1 题目

素数:只能被1和自身整除的数,0、1除外

2.2 解题思路与题解代码

解法1:暴力算法

直接从2开始遍历,判断是否能被2到自身之间的数整除

代码展示
public class CountPrimes {
    public int countPrimes(int n) {
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            ans += isPrime(i) ? 1 : 0;
        }
        return ans;
    }
    //i如果能被x整除,则x/i肯定能被x整除,因此只需判断i和根号x之中较小的即可
    public boolean isPrime(int x) {
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) {
                return false;
            }
        }
        return true;
    }


}

解法1:埃氏筛

利用合数的概念(非素数),素数*n必然是合数,因此可以从2开始遍历,将所有的合数做上标记

代码展示
//埃氏筛
    public static int eratosthenes(int n) {
        boolean[] isPrime = new boolean[n];
        int ans = 0;
        for (int i = 2; i < n; i++) {
            if (!isPrime[i]) {
                ans += 1;
                for (int j = i * i; j < n; j += i) {
                    isPrime[j] = true;
                }
            }
        }
        return ans;
    }

将合数标记为true,j = i * i 从 2 * i 优化而来,系数2会随着遍历递增(j += i,相当于递增了系数2),每一个合数都会有两个比本身要小的因子(0,1除外),2 * i 必然会遍历到这两个因子


当2递增到大于根号n时,其实后面的已经无需再判断(或者只需判断后面一段),而2到根号n、实际上在 i 递增的过程中已经计算过了,i 实际上就相当于根号n


例如:n = 25 会计算以下


2 * 4 = 8


3 * 4 = 12


但实际上8和12已经标记过,在n = 17时已经计算了 3 * 4,2 * 4

3 删除排序数组中的重复项

3.1 题目

一个有序数组 nums ,原地删除重复出现的元素,使每个元素只出现一次 ,返回删除后数组的新长度。

不要使用额外的数组空间,必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。

3.2 解题思路

双指针算法:

数组完成排序后,我们可以放置两个指针 i 和 j,其中 i 是慢指针,而 j 是快指针。只要nums[i]=nums[j],我们就增加 j 以跳过重复项。

当遇到 nums[j] != nums[i]时,跳过重复项的运行已经结束,必须把nums[j])的值复制到 nums[i +1]。然后递增 i,接着将再次重复相同的过程,直到 j 到达数组的末尾为止。

3.3 题解代码

public int removeDuplicates(int[] nums) {
        if (nums.length == 0) return 0;
        int i = 0;
        for (int j = 1; j < nums.length; j++) {
            if (nums[j] != nums[i]) {
                i++;
                nums[i] = nums[j];
            }
        }
        return i + 1;
}

目录
相关文章
|
2月前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
285 35
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
2月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
4月前
|
运维 监控 算法
基于 Java 滑动窗口算法的局域网内部监控软件流量异常检测技术研究
本文探讨了滑动窗口算法在局域网流量监控中的应用,分析其在实时性、资源控制和多维分析等方面的优势,并提出优化策略,结合Java编程实现高效流量异常检测。
157 0
|
2月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
161 2
|
2月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
181 1
|
3月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
147 0
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
234 16
|
4月前
|
缓存 并行计算 安全
关于Java多线程详解
本文深入讲解Java多线程编程,涵盖基础概念、线程创建与管理、同步机制、并发工具类、线程池、线程安全集合、实战案例及常见问题解决方案,助你掌握高性能并发编程技巧,应对多线程开发中的挑战。