Python简单爬虫案例

简介: 用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。

用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。

实现步骤

1.导入依赖

网页内容依赖

import requests,如没有下载依赖,在terminal处输出pip install requests,系统会自动导入依赖。

解析内容依赖

常用的有BeautifulSoup、parsel、re等等。


与上面步骤一样,如没有依赖,则在terminal处导入依赖。


导入BeautifulSoup依赖

pip install bs4

导入pasel依赖

pip install parsel

使用依赖

from bs4 import BeautifulSoup
import requests
import parsel
import re

2.获取数据

简单的获取网页,网页文本

response = requests.get(url).text

对于很多网站可能需要用户身份登录,此时用headers伪装,此内容可以在浏览器f12获得

headers = {
    'Cookie': 'cookie,非真实的',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
}

headers = {
    'Host': 'www.qidian.com',
    'Connection': 'keep-alive',
    'Pragma': 'no-cache',
    'Cache-Control': 'no-cache',
    'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"Windows"',
    'Upgrade-Insecure-Requests': '1',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36',
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
    'Sec-Fetch-Site': 'same-origin',
    'Sec-Fetch-Mode': 'navigate'
}

伪装后获取网页数据

response = requests.get(url=url,headers=headers).get.text

甚至还有些跟SSL证书相关,还需设置proxies

proxies = {
    'http': 'http://127.0.0.1:9000',
    'https': 'http://127.0.0.1:9000'
}
response = requests.get(url=url,headers=headers, proxies=proxies).get.text

3.解析数据

数据的解析有几种方式,比如xpath,css, re。


css顾名思义,就是html标签解析方式了。


re是正则表达式解析。

4.写入文件

with open(titleName + '.txt', mode='w', encoding='utf-8') as f:
    f.write(content)

open函数打开文件IO,with函数让你不用手动关闭IO流,类似Java中Try catch模块中try()引入IO流。


第一个函数为文件名,mode为输入模式,encoding为编码,还有更多的参数,可以自行研究。


write为写入文件。

完整案例

import requests
import parsel


link = '小说起始地址,法律原因不给出具体的'
link_data = requests.get(url=link).text
link_selector = parsel.Selector(link_data)
href = link_selector.css('.DivTr a::attr(href)').getall()
for index in href:
    url = f'https:{index}'
    print(url)
    response = requests.get(url, headers)

    html_data = response.text
    selector = parsel.Selector(html_data)
    title = selector.css('.c_l_title h1::text').get()
    content_list = selector.css('div.noveContent p::text').getall()
    content = '\n'.join(content_list)
    with open(title + '.txt', mode='w', encoding='utf-8') as f:
        f.write(content)

以上案例可以获取fl小说网的免费章节,那么付费章节呢?


付费章节是照片形式的存在,找到照片然后用百度云计算解析照片的文字即可,爬取付费内容是违法行为,这部分代码不能提供。

相关文章
|
25天前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
2月前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
1月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
2月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
636 19
|
1月前
|
数据采集 存储 JSON
Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
|
1月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
2月前
|
数据采集 存储 Web App开发
处理Cookie和Session:让Python爬虫保持连贯的"身份"
处理Cookie和Session:让Python爬虫保持连贯的"身份"
|
2月前
|
数据采集 Web App开发 前端开发
处理动态Token:Python爬虫应对AJAX授权请求的策略
处理动态Token:Python爬虫应对AJAX授权请求的策略
|
2月前
|
数据采集 网络协议 API
协程+连接池:高并发Python爬虫的底层优化逻辑
协程+连接池:高并发Python爬虫的底层优化逻辑
|
3月前
|
数据采集 存储 JSON
地区电影市场分析:用Python爬虫抓取猫眼/灯塔专业版各地区票房
地区电影市场分析:用Python爬虫抓取猫眼/灯塔专业版各地区票房

推荐镜像

更多