Python简单爬虫案例

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。

用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。

一、实现步骤

1.1 导入依赖

网页内容依赖

import requests,如没有下载依赖,在terminal处输出pip install requests,系统会自动导入依赖.

解析内容依赖

常用的有BeautifulSoup、parsel、re等等.


与上面步骤一样,如没有依赖,则在terminal处导入依赖.

导入BeautifulSoup依赖

pip install bs4

导入pasel依赖

pip install parsel

使用依赖

from bs4 import BeautifulSoup
import requests
import parsel
import re

1.2 获取数据

简单的获取网页,网页文本

response = requests.get(url).text

对于很多网站可能需要用户身份登录,此时用headers伪装,此内容可以在浏览器f12获得

headers = {
    'Cookie': 'cookie,非真实的',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
}
headers = {
    'Host': 'www.qidian.com',
    'Connection': 'keep-alive',
    'Pragma': 'no-cache',
    'Cache-Control': 'no-cache',
    'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"Windows"',
    'Upgrade-Insecure-Requests': '1',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36',
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
    'Sec-Fetch-Site': 'same-origin',
    'Sec-Fetch-Mode': 'navigate'
}

伪装后获取网页数据

response = requests.get(url=url,headers=headers).get.text

甚至还有些跟SSL证书相关,还需设置proxies

proxies = {
    'http': 'http://127.0.0.1:9000',
    'https': 'http://127.0.0.1:9000'
}
response = requests.get(url=url,headers=headers, proxies=proxies).get.text

1.3 解析数据

数据的解析有几种方式,比如xpath,css, re。


css顾名思义,就是html标签解析方式了。


re是正则表达式解析。

1.4 写入文件

with open(titleName + '.txt', mode='w', encoding='utf-8') as f:
    f.write(content)

open函数打开文件IO,with函数让你不用手动关闭IO流,类似Java中Try catch模块中try()引入IO流。


第一个函数为文件名,mode为输入模式,encoding为编码,还有更多的参数,可以自行研究。


write为写入文件。

二、完整案例

import requests
import parsel
link = '小说起始地址,法律原因不给出具体的'
link_data = requests.get(url=link).text
link_selector = parsel.Selector(link_data)
href = link_selector.css('.DivTr a::attr(href)').getall()
for index in href:
    url = f'https:{index}'
    print(url)
    response = requests.get(url, headers)
    html_data = response.text
    selector = parsel.Selector(html_data)
    title = selector.css('.c_l_title h1::text').get()
    content_list = selector.css('div.noveContent p::text').getall()
    content = '\n'.join(content_list)
    with open(title + '.txt', mode='w', encoding='utf-8') as f:
        f.write(content)

以上案例可以获取fl小说网的免费章节,那么付费章节呢?


付费章节是照片形式的存在,找到照片然后用百度云计算解析照片的文字即可,爬取付费内容是违法行为,这部分代码不能提供


相关文章
|
2月前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
3月前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
3月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
2天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
28天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
1月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
82 3
|
2月前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
2月前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。

热门文章

最新文章