[go 面试] 一致性哈希:数据分片与负载均衡的黄金法则

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: [go 面试] 一致性哈希:数据分片与负载均衡的黄金法则

在分布式系统中,一致性哈希(Consistent Hashing)是一项关键算法,为解决数据分片和负载均衡难题提供了强大的支持。本文将深入研究一致性哈希的核心原理,解析其如何超越传统哈希算法,同时详细探讨一个关键问题:当节点发生问题时,数据是如何被处理的。


一、探秘基本原理


一致性哈希巧妙地将节点和数据映射到一个环状的哈希空间上。节点的哈希值确定了其在环上的位置,而数据的哈希值则找到了对应的环上位置。为了提高均衡性,一致性哈希引入了虚拟节点的概念,进一步优化了节点与数据的分布。


二、巧妙应对节点问题


Q:节点问题如何巧妙处理?


节点离开:当节点不可用或被标记为离开状态时,系统探测到并作出相应处理。数据重新分配:一致性哈希算法重新计算数据的哈希值,找到新的节点存储这些数据。数据迁移:需要迁移的数据从离开的节点中取出,按新的哈希值找到新的节点存储。此过程可能耗时,取决于数据大小和分布。新节点加入:添加新节点时,算法根据新节点的哈希值在环上找到位置,并从相邻节点迁移一部分数据,保持负载均衡。


三、优势与应用场景


一致性哈希通过虚拟节点和环状结构,解决了传统哈希算法在动态环境下的数据迁移问题,提供了卓越的负载均衡性能。其在分布式系统中的数据分片和负载均衡方面有着广泛的应用。


通过以上步骤,一致性哈希算法能够在节点故障时重新分配数据,确保数据的存储和访问不受影响。相比于传统哈希算法,一致性哈希在节点变动时的数据迁移开销较小,使系统更有效地应对节点故障和扩展。

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
打赏
0
4
5
1
75
分享
相关文章
Go 切片导致 rand.Shuffle 产生重复数据的原因与解决方案
在 Go 语言开发中,使用切片时由于其底层数据共享特性,可能会引发意想不到的 Bug。本文分析了 `rand.Shuffle` 后切片数据重复的问题,指出原因在于切片是引用类型,直接赋值会导致底层数组共享,进而影响原始数据。解决方案是使用 `append` 进行数据拷贝,确保独立副本,避免 `rand.Shuffle` 影响原始数据。总结强调了切片作为引用类型的特性及正确处理方法,确保代码稳定性和正确性。
98 81
面试中的难题:线程异步执行后如何共享数据?
本文通过一个面试故事,详细讲解了Java中线程内部开启异步操作后如何安全地共享数据。介绍了异步操作的基本概念及常见实现方式(如CompletableFuture、ExecutorService),并重点探讨了volatile关键字、CountDownLatch和CompletableFuture等工具在线程间数据共享中的应用,帮助读者理解线程安全和内存可见性问题。通过这些方法,可以有效解决多线程环境下的数据共享挑战,提升编程效率和代码健壮性。
43 6
招行面试:高并发写,为什么不推荐关系数据?
资深架构师尼恩针对高并发场景下为何不推荐使用关系数据库进行数据写入进行了深入剖析。文章详细解释了关系数据库(如MySQL)在高并发写入时的性能瓶颈,包括存储机制和事务特性带来的开销,并对比了NoSQL数据库的优势。通过具体案例和理论分析,尼恩为读者提供了系统化的解答,帮助面试者更好地应对类似问题,提升技术实力。此外,尼恩还分享了多个高并发系统的解决方案及优化技巧,助力开发者在面试中脱颖而出。 文章链接:[原文链接](https://mp.weixin.qq.com/s/PKsa-7eZqXDg3tpgJKCAAw) 更多技术资料和面试宝典可关注【技术自由圈】获取。
面试必备!一文搞懂HashMap如何优雅处理哈希冲突
大家好,我是小米,一个积极的程序员。今天聊聊Java面试中的常见问题——“HashMap是怎么解决哈希冲突的?”。通过一个小故事,我们了解到HashMap使用链地址法(JDK 1.8前)和红黑树(JDK 1.8后)来处理哈希冲突。链地址法用链表存储冲突的元素,而红黑树在链表长度超过8时启用,提升查找效率。希望这个讲解能帮助你更好地理解HashMap的工作原理。欢迎留言讨论,关注我的公众号“软件求生”,获取更多技术干货!
46 3
招行面试:100万级别数据的Excel,如何秒级导入到数据库?
本文由40岁老架构师尼恩撰写,分享了应对招商银行Java后端面试绝命12题的经验。文章详细介绍了如何通过系统化准备,在面试中展示强大的技术实力。针对百万级数据的Excel导入难题,尼恩推荐使用阿里巴巴开源的EasyExcel框架,并结合高性能分片读取、Disruptor队列缓冲和高并发批量写入的架构方案,实现高效的数据处理。此外,文章还提供了完整的代码示例和配置说明,帮助读者快速掌握相关技能。建议读者参考《尼恩Java面试宝典PDF》进行系统化刷题,提升面试竞争力。关注公众号【技术自由圈】可获取更多技术资源和指导。
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
84 1
滴滴面试:单表可以存200亿数据吗?单表真的只能存2000W,为什么?
40岁老架构师尼恩在其读者交流群中分享了一系列关于InnoDB B+树索引的面试题及解答。这些问题包括B+树的高度、存储容量、千万级大表的优化、单表数据量限制等。尼恩详细解释了InnoDB的存储结构、B+树的磁盘文件格式、索引数据结构、磁盘I/O次数和耗时,以及Buffer Pool缓存机制对性能的影响。他还提供了实际操作步骤,帮助读者通过元数据找到B+树的高度。尼恩强调,通过系统化的学习和准备,可以大幅提升面试表现,实现“offer直提”。相关资料和PDF可在其公众号【技术自由圈】获取。
小米面试题:多级缓存一致性问题怎么解决
【10月更文挑战第23天】在现代分布式系统中,多级缓存架构因其能够显著提高系统性能和响应速度而被广泛应用。
140 3
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
626 1
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
尼恩,一位资深架构师,分享了关于负载均衡及其策略的深入解析,特别是基于权重的负载均衡策略。文章不仅介绍了Nginx的五大负载均衡策略,如轮询、加权轮询、IP哈希、最少连接数等,还提供了手写加权轮询算法的Java实现示例。通过这些内容,尼恩帮助读者系统化理解负载均衡技术,提升面试竞争力,实现技术上的“肌肉展示”。此外,他还提供了丰富的技术资料和面试指导,助力求职者在大厂面试中脱颖而出。
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等