[go 面试] 雪花算法与分布式ID生成

简介: [go 面试] 雪花算法与分布式ID生成

生成全局唯一ID的雪花算法原理


雪花算法是一种用于生成全局唯一ID的算法,最初由Twitter开发,用于解决分布式系统中生成ID的问题。其核心思想是将一个64位的长整型ID划分成多个部分,每个部分用于表示不同的信息,确保了生成的ID在分布式环境下的唯一性。


ID结构


  1. 符号位(1位):始终为0,用于保证ID为正数。
  2. 时间戳(41位):表示生成ID的时间戳,精确到毫秒级。
  3. 工作节点ID(10位):表示生成ID的机器的唯一标识。
  4. 序列号(12位):表示在同一毫秒内生成的多个ID的序列号。


生成步骤


  1. 获取当前时间戳,精确到毫秒级。
  2. 如果当前时间小于上次生成ID的时间,或者在同一毫秒内生成的ID数量超过最大值,等待下一毫秒再继续生成。
  3. 如果当前时间等于上次生成ID的时间,序列号自增1。
  4. 如果当前时间大于上次生成ID的时间,序列号重新从0开始。
  5. 将各个部分的值组合,得到最终的64位ID。


Go实现雪花算法的高并发ID生成器


package main
import (
 "fmt"
 "sync"
 "time"
)
const (
 workerBits     = 10
 sequenceBits   = 12
 workerMax      = -1 ^ (-1 << workerBits)
 sequenceMask   = -1 ^ (-1 << sequenceBits)
 timeShift      = workerBits + sequenceBits
 workerShift    = sequenceBits
 epoch          = 1609459200000
)
type Snowflake struct {
 mu          sync.Mutex
 lastTime    int64
 workerID    int64
 sequence    int64
}
func NewSnowflake(workerID int64) *Snowflake {
 if workerID < 0 || workerID > workerMax {
  panic(fmt.Sprintf("worker ID must be between 0 and %d", workerMax))
 }
 return &Snowflake{
  lastTime: time.Now().UnixNano() / 1e6,
  workerID: workerID,
  sequence: 0,
 }
}
func (sf *Snowflake) NextID() int64 {
 sf.mu.Lock()
 defer sf.mu.Unlock()
 currentTime := time.Now().UnixNano() / 1e6
 if currentTime < sf.lastTime {
  panic(fmt.Sprintf("clock moved backwards, refusing to generate ID for %d milliseconds", sf.lastTime-currentTime))
 }
 if currentTime == sf.lastTime {
  sf.sequence = (sf.sequence + 1) & sequenceMask
  if sf.sequence == 0 {
   for currentTime <= sf.lastTime {
    currentTime = time.Now().UnixNano() / 1e6
   }
  }
 } else {
  sf.sequence = 0
 }
 sf.lastTime = currentTime
 id := (currentTime-epoch)<<timeShift | (sf.workerID << workerShift) | sf.sequence
 return id
}
func main() {
 sf := NewSnowflake(1) // 假设工作节点ID为1
 for i := 0; i < 10; i++ {
  id := sf.NextID()
  fmt.Println(id)
  time.Sleep(time.Millisecond)
 }
}


高并发下的唯一性和递增性保障


在高并发场景下,保障雪花算法生成的ID唯一性和递增性的关键在于:


  1. 唯一性: 工作节点ID的设置保证了不同节点生成的ID不会冲突。序列号的自增和位运算保证了同一毫秒内生成的ID唯一。
  2. 递增性: 在同一毫秒内生成的多个ID按序列号的递增顺序排列。即使在极端情况下,同一毫秒内生成的ID数量超过了最大值,会等待下一毫秒重新开始,也保证了递增性。


总体来说,雪花算法在高并发下是一个可靠的ID生成方案。它的高性能和低碰撞概率使得它在分布式系统中被广泛应用。

相关文章
|
6天前
|
算法 程序员 Go
PHP 程序员学会了 Go 语言就能唬住面试官吗?
【9月更文挑战第8天】学会Go语言可提升PHP程序员的面试印象,但不足以 solely “唬住” 面试官。学习新语言能展现学习能力、拓宽技术视野,并增加就业机会。然而,实际项目经验、深入理解语言特性和综合能力更为关键。全面展示这些方面才能真正提升面试成功率。
27 10
|
20天前
|
存储 NoSQL 算法
Go 分布式令牌桶限流 + 兜底保障
Go 分布式令牌桶限流 + 兜底保障
|
20天前
|
监控 Go API
带你十天轻松搞定 Go 微服务之大结局(分布式事务)
带你十天轻松搞定 Go 微服务之大结局(分布式事务)
|
1月前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID
|
1月前
|
运维 监控 容灾
[go 面试] 实现服务高可用的策略和实践
[go 面试] 实现服务高可用的策略和实践
|
1月前
|
Go API 数据库
[go 面试] 分布式事务框架选择与实践
[go 面试] 分布式事务框架选择与实践
|
20天前
|
消息中间件 SQL 关系型数据库
go-zero微服务实战系列(十、分布式事务如何实现)
go-zero微服务实战系列(十、分布式事务如何实现)
|
21天前
|
Kubernetes Go 数据库
go-zero 分布式事务最佳实践
go-zero 分布式事务最佳实践
|
21天前
|
NoSQL Go Redis
用 Go + Redis 实现分布式锁
用 Go + Redis 实现分布式锁
|
20天前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
53 2
基于Redis的高可用分布式锁——RedLock