【博士每天一篇文献-算法】Modular state space of echo state network

简介: 本文提出了一种改进的回声状态网络(ESN)方法,名为模块化状态空间的ESN(MSSESN),通过将状态空间分解为多个子空间(模块)并使用分段输出函数映射每个模块的状态到输出,实现了直接预测,提高了预测性能,并在Mackey-Glass和Lorenz时间序列预测中展示了其优越性。

阅读时间:2023-11-2

1 介绍

年份:2013
作者:陈卫彪,华南理工大学计算机科学与工程学院,
期刊:Neurocomputing
引用量:17
本文介绍了一种改进回声状态网络(ESN)预测性能的新方法。该方法将ESN的状态空间分解为多个子空间,并将每个子空间定义为一个模块。这种方法称为回声状态网络的模块化状态空间(MSSESN),它使用分段输出函数将每个模块的状态分别映射到输出。MSSESN通过将存储器嵌入到网络输入中,并消除输出神经元到储层的反馈连接,从而将迭代式预测替换为直接预测。将由储层重建的状态空间划分为几个模块,并为每个模块的输出神经元分配独立的权重向量。MSSESN利用储层的模块性和机制,采用“分而治之”的策略。该方法已在Mackey-Glass和Lorenz时间序列的基准预测上进行了测试,结果显示其预测准确性高于以前的技术。

2 创新点

(1)将Echo State Network (ESN)的状态空间分解为多个子空间,每个子空间被定义为一个模块。这种方法被称为模块化状态空间的Echo State Network (MSSESN)。
(2)MSSESN使用分段输出函数,将每个模块的状态分别映射到输出。通过将记忆嵌入到网络输入中,以及消除输出神经元到储层的反馈连接,MSSESN实现了直接预测,取代了迭代预测。
(3)MSSESN利用储层的模块化和机制,采用“分而治之”的策略。这种方法在Mackey-Glass和Lorenz时间序列的基准预测中进行了验证,并且显示出比之前的技术更高的预测准确性。
(4)MSSESN通过使用随机连接的储层和易于调整的线性读出输出,可以在高维状态空间中重构输入信号,类似于核机器方法中核函数的功能。

3 相关研究

(1)Making Sense of a Complex World
该论文提出,在具有噪声的时间序列上迭代预测ESN是低效的,因为存在不稳定性和误差累积的问题。同时,成功训练的一步预测器通常在自主系统的应用中失败,因为很难保证模型的稳定性,甚至无法保证模型和系统吸引子的等价性。
(2)Support Vector Echo-State Machine for Chaotic Time
该论文提出了一种基于支持向量机的支持向量回声状态机(SVESM)作为改进ESN的直接方法。然而,正则化系数的参数很难确定,并且其交叉验证过程非常耗时。
(3)Optimization and Applications of Echo State Networks with Leaky Integrator Neurons
该论文介绍了一种扩展ESN的方法,即漏积分器储层单元。
(4)Decoupled Echo State Networks with Lateral Inhibition
该论文介绍了一种扩展ESN的方法,即解耦ESN。
(5)Collective Behavior of a Small-World Recurrent Neural System with Scale-Free Distribution
该论文介绍了一种扩展ESN的方法,即小世界储层。
(6)Echo State Networks with Filter Neurons and a Delay & Sum Readout
该论文介绍了一种扩展ESN的方法,即具有延迟和求和读出的滤波神经元。
(7)Effects of Connectivity Structure of Complex Echo State Network on Its Prediction Performance for Nonlinear Time Series
该论文介绍了一种扩展ESN的方法,即在储层计算中的复杂ESN。
(8)Pruning and Regularization in Reservoir Computing
该论文介绍了一种对储层计算中的修剪和正则化。
(9)Echo State Gaussian Process
该论文介绍了一种回声状态高斯过程作为一种新型的非线性回归模型。

4 算法

(1)将Echo State Network (ESN)的状态空间分解为多个子空间,每个子空间被定义为一个模块。
(2)使用分段输出函数将每个模块的状态分别映射到输出。
(3)将记忆嵌入网络输入并消除输出神经元与储层之间的反馈连接,用直接预测取代迭代预测。

image.png

5 实验分析

评价指标NMSE、ERMSE
image.png
(1)Mackey-Glass时间序列预测数据集的效果
MSSESN的预测效果优于基于Evolino的长短期记忆(LSTM)方法和Echo State Gaussian Process(ESGP)方法。
(2)神经元数量的影响
神经元数量N对MSSESN的性能有显著影响。在Mackey-Glass问题的预测中,随着N的增加,预测误差逐渐减小。然而,在Lorenz问题的预测中,当N从100增加到200时,预测误差逐渐减小,但当N从200增加到500时,预测误差快速增加。因此,在Lorenz问题的预测中,MSSESN使用相对较小的N(N = 200)获得最佳结果。
(3)模块数量的影响
模块数量M对MSSESN的性能也有重要影响。在Mackey-Glass问题的预测中,当M从2增加到14时,预测误差逐渐减小,但当M从14增加到20时,预测误差快速增加。在Lorenz问题的预测中,当M从2增加到6时,预测误差逐渐减小,但当M继续增加时,预测误差变化较缓慢。因此,在MSSESN中,模块数量的选择需要在模型复杂性和准确性之间进行权衡。

6 思考

他这个模型图,似乎没有画到合理,作者说“将由储层重建的状态空间划分为几个模块,并为每个模块的输出神经元分配独立的权重向量”。那在储层中,应该是应该将神经元分类。每一个模块包含几个神经元。每个模块之间的神经元应该是不共享的。
和其他几篇论文是高度相关的,具体实现上稍微有些许不同。
【Echo State Network with Hub Property】
【Extending stability through hierarchical clusters in Echo State Networks】
【A Versatile Hub Model For Efficient Information Propagation And Feature Selection】

目录
相关文章
|
3月前
|
机器学习/深度学习 存储 算法
【博士每天一篇文献-算法】Memory augmented echo state network for time series prediction
本文介绍了一种记忆增强的回声状态网络(MA-ESN),它通过在储层中引入线性记忆模块和非线性映射模块来平衡ESN的记忆能力和非线性映射能力,提高了时间序列预测的性能,并在多个基准数据集上展示了其优越的记忆能力和预测精度。
29 3
【博士每天一篇文献-算法】Memory augmented echo state network for time series prediction
|
3月前
|
机器学习/深度学习 算法 调度
【博士每天一篇文献-算法】Neurogenesis Dynamics-inspired Spiking Neural Network Training Acceleration
NDSNN(Neurogenesis Dynamics-inspired Spiking Neural Network)是一种受神经发生动态启发的脉冲神经网络训练加速框架,通过动态稀疏性训练和新的丢弃与生长策略,有效减少神经元连接数量,降低训练内存占用并提高效率,同时保持高准确性。
43 3
|
3月前
|
机器学习/深度学习 算法 物联网
【博士每天一篇论文-算法】Overview of Echo State Networks using Different Reservoirs and Activation Functions
本文研究了在物联网网络中应用回声状态网络(ESN)进行交通预测的不同拓扑结构,通过与SARIMA、CNN和LSTM等传统算法的比较,发现特定配置的ESN在数据速率和数据包速率预测方面表现更佳,证明了ESN在网络流量预测中的有效性。
31 4
|
3月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇文献-算法】Seeing is believing_ Brain-inspired modular training for mechanistic interpretability
这篇文章提出了一种模仿大脑结构和功能的训练正则化方法,称为大脑启发的模块化训练(BIMT),通过在几何空间中嵌入神经元并增加与连接长度成比例的正则化项来促进神经网络的模块化和稀疏化,增强了网络的可解释性,并在多种任务和数据集上验证了其有效性。
39 2
|
3月前
|
机器学习/深度学习 算法 网络架构
【博士每天一篇文献-算法】CircuitNet:A Generic Neural Network to Realize Universal Circuit Motif Modeling
本文介绍了CircuitNet,这是一种新型神经网络,它受到神经回路结构的启发,通过使用电路基元单元(CMUs)来模拟通用电路基元,并通过调整CMU内部权重来实现建模,在多种机器学习任务中展现出优于传统前馈网络的性能。
55 3
|
3月前
|
机器学习/深度学习 存储 算法
【博士每天一篇文献-算法】Evolutionary multi-task learning for modular knowledge representation in neuralnetworks
本文提出了一种进化式多任务学习方法(EMTL),用于在神经网络中通过模块化网络拓扑实现模块化知识表示,模仿人脑的模块化结构存储知识,提高了网络的鲁棒性和灵活性,并在奇偶校验问题和基准模式分类任务上验证了其有效性。
28 1
|
3月前
|
算法
【博士每天一篇文献-算法】Optimal resilience of modular interacting networks
本文是一篇关于网络科学中模块化相互作用网络最佳韧性的研究论文,提出了两种分析框架来探讨在确定性和随机耦合模式下这些网络的韧性,并发现存在一个最佳互连节点的比例,可以最大化系统的韧性,使其能够承受更多的破坏。研究强调了理解真实世界耦合模式的重要性,并基于这些模式优化系统设计的重要性,对于设计和优化经济、社会和基础设施网络具有重要意义。
24 0
【博士每天一篇文献-算法】Optimal resilience of modular interacting networks
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。