Apache Flink 大揭秘:征服大数据实时流处理的神奇魔法,等你来解锁!

简介: 【8月更文挑战第5天】Apache Flink 是一款强大的开源大数据处理框架,专长于实时流处理。本教程通过两个示例引导你入门:一是计算数据流中元素的平均值;二是从 Kafka 中读取数据并实时处理。首先确保已安装配置好 Flink 和 Kafka 环境。第一个 Java 示例展示了如何创建流执行环境,生成数据流,利用 `flatMap` 转换数据,并使用 `keyBy` 和 `sum` 计算平均值。第二个示例则演示了如何设置 Kafka 消费者属性,并从 Kafka 主题读取数据。这两个示例为你提供了使用 Flink 进行实时流处理的基础。随着进一步学习,你将能应对更复杂的实时数据挑战。

Apache Flink 是一个强大的开源大数据处理框架,特别擅长实时流处理。以下是一个关于如何使用 Apache Flink 进行大数据实时流处理的教程。

首先,确保您已经正确安装和配置了 Apache Flink 环境。

接下来,让我们从一个简单的示例开始,比如计算数据流中元素的平均值。

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkStreamProcessingExample {
   

    public static void main(String[] args) throws Exception {
   
        // 创建流执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 生成模拟数据流
        DataStream<String> inputDataStream = env.fromElements("10", "20", "30", "40", "50");

        // 对数据流进行处理
        DataStream<Tuple2<String, Double>> resultStream = inputDataStream
              .flatMap(new FlatMapFunction<String, Tuple2<String, Double>>() {
   
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Double>> out) {
   
                        try {
   
                            double num = Double.parseDouble(value);
                            out.collect(new Tuple2<>("Average", num));
                        } catch (NumberFormatException e) {
   
                            // 处理异常
                        }
                    }
                })
              .keyBy(t -> t.f0)
              .sum(1);

        // 打印结果
        resultStream.print();

        // 执行任务
        env.execute("Flink Stream Processing Job");
    }
}

在上述示例中,我们首先创建了一个流执行环境,然后生成了一个包含数字字符串的模拟数据流。通过 flatMap 函数将字符串转换为数字,并使用 keyBy 函数按照指定的键进行分组,最后使用 sum 函数计算总和。

再来看一个更复杂的例子,比如从 Kafka 主题中读取数据并进行实时处理。

首先,确保您已经配置好了 Kafka 环境。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class FlinkKafkaStreamProcessingExample {
   

    public static void main(String[] args) throws Exception {
   
        // 创建流执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 设置 Kafka 消费者的属性
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "flink-consumer-group");

        // 创建从 Kafka 主题读取数据的消费者
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("your_topic", new SimpleStringSchema(), properties);

        // 从 Kafka 读取数据流
        DataStream<String> inputDataStream = env.addSource(kafkaConsumer);

        // 对数据流进行处理(这里可以根据实际需求添加处理逻辑)

        // 执行任务
        env.execute("Flink Kafka Stream Processing Job");
    }
}

在这个示例中,我们配置了 Kafka 消费者的属性,创建了消费者对象,并从指定的 Kafka 主题中读取数据进行处理。

通过这些示例,您应该对使用 Apache Flink 进行大数据实时流处理有了一个初步的了解。随着您对 Flink 的深入学习和实践,您可以处理更复杂的实时流处理任务,充分发挥 Flink 的强大功能。

相关文章
|
3月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
693 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
434 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
923 43
|
5月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
736 9
Apache Flink:从实时数据分析到实时AI
|
5月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
382 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
5月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
664 0
|
3月前
|
存储 消息中间件 人工智能
云栖实录|实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
本文根据 2025 云栖大会演讲整理而成,演讲信息如下 演讲人:黄鹏程 阿里云智能集团计算平台事业部实时计算Flink版产品负责人
329 1
云栖实录|实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
|
4月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1705 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
4月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
486 4

推荐镜像

更多