Apache Flink 大揭秘:征服大数据实时流处理的神奇魔法,等你来解锁!

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【8月更文挑战第5天】Apache Flink 是一款强大的开源大数据处理框架,专长于实时流处理。本教程通过两个示例引导你入门:一是计算数据流中元素的平均值;二是从 Kafka 中读取数据并实时处理。首先确保已安装配置好 Flink 和 Kafka 环境。第一个 Java 示例展示了如何创建流执行环境,生成数据流,利用 `flatMap` 转换数据,并使用 `keyBy` 和 `sum` 计算平均值。第二个示例则演示了如何设置 Kafka 消费者属性,并从 Kafka 主题读取数据。这两个示例为你提供了使用 Flink 进行实时流处理的基础。随着进一步学习,你将能应对更复杂的实时数据挑战。

Apache Flink 是一个强大的开源大数据处理框架,特别擅长实时流处理。以下是一个关于如何使用 Apache Flink 进行大数据实时流处理的教程。

首先,确保您已经正确安装和配置了 Apache Flink 环境。

接下来,让我们从一个简单的示例开始,比如计算数据流中元素的平均值。

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkStreamProcessingExample {
   

    public static void main(String[] args) throws Exception {
   
        // 创建流执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 生成模拟数据流
        DataStream<String> inputDataStream = env.fromElements("10", "20", "30", "40", "50");

        // 对数据流进行处理
        DataStream<Tuple2<String, Double>> resultStream = inputDataStream
              .flatMap(new FlatMapFunction<String, Tuple2<String, Double>>() {
   
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Double>> out) {
   
                        try {
   
                            double num = Double.parseDouble(value);
                            out.collect(new Tuple2<>("Average", num));
                        } catch (NumberFormatException e) {
   
                            // 处理异常
                        }
                    }
                })
              .keyBy(t -> t.f0)
              .sum(1);

        // 打印结果
        resultStream.print();

        // 执行任务
        env.execute("Flink Stream Processing Job");
    }
}
AI 代码解读

在上述示例中,我们首先创建了一个流执行环境,然后生成了一个包含数字字符串的模拟数据流。通过 flatMap 函数将字符串转换为数字,并使用 keyBy 函数按照指定的键进行分组,最后使用 sum 函数计算总和。

再来看一个更复杂的例子,比如从 Kafka 主题中读取数据并进行实时处理。

首先,确保您已经配置好了 Kafka 环境。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class FlinkKafkaStreamProcessingExample {
   

    public static void main(String[] args) throws Exception {
   
        // 创建流执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 设置 Kafka 消费者的属性
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "flink-consumer-group");

        // 创建从 Kafka 主题读取数据的消费者
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("your_topic", new SimpleStringSchema(), properties);

        // 从 Kafka 读取数据流
        DataStream<String> inputDataStream = env.addSource(kafkaConsumer);

        // 对数据流进行处理(这里可以根据实际需求添加处理逻辑)

        // 执行任务
        env.execute("Flink Kafka Stream Processing Job");
    }
}
AI 代码解读

在这个示例中,我们配置了 Kafka 消费者的属性,创建了消费者对象,并从指定的 Kafka 主题中读取数据进行处理。

通过这些示例,您应该对使用 Apache Flink 进行大数据实时流处理有了一个初步的了解。随着您对 Flink 的深入学习和实践,您可以处理更复杂的实时流处理任务,充分发挥 Flink 的强大功能。

目录
打赏
0
0
0
0
320
分享
相关文章
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
495 33
The Past, Present and Future of Apache Flink
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
273 1
Apache Flink 2.0.0: 实时数据处理的新纪元
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
360 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
6月前
|
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1241 13
Apache Flink 2.0-preview released
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
213 5
Flink 基础详解:大数据处理的强大引擎
Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。
569 32
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
Apache Flink 2.0:Streaming into the Future
本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。
848 13
Apache Flink 2.0:Streaming into the Future
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
258 56
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
137 1

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等