命名实体识别(Named Entity Recognition, NER)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 命名实体识别(Named Entity Recognition, NER)

命名实体识别(Named Entity Recognition,NER)是自然语言处理(NLP)中的一项重要任务,它涉及从文本中识别出具有特定意义的实体,并将其分类为预定义的类别。这些实体通常包括人名、地点、组织、日期、时间、数值、货币等。NER是许多高级NLP任务的基础,例如信息提取、知识图谱构建、情感分析等。

以下是NER任务的一些关键方面:

  1. 实体类型

    • 常见的命名实体类型包括:
      • 人名(PERSON)
      • 地点(LOCATION)
      • 组织(ORGANIZATION)
      • 时间表达式(TIME)
      • 日期(DATE)
      • 数值(NUMBER)
      • 货币(MONEY)
  2. 标注模式

    • 在NER任务中,文本通常被转换为一种带有实体标注的格式,如BIO或BIOUL标签体系。
    • BIO标签体系中,"B"代表实体的开始,"I"代表实体的内部,"O"代表非实体部分。
  3. 算法和模型

    • 早期的NER系统依赖于手工制定的规则和特征工程,结合机器学习算法如隐马尔可夫模型(HMM)或条件随机场(CRF)。
    • 近年来,深度学习方法,特别是循环神经网络(RNN)和长短时记忆网络(LSTM),以及更先进的变换器模型(Transformer),如BERT和其变体,已成为NER任务的主流。
  4. 预训练模型

    • 预训练语言模型,如BERT、RoBERTa、ELECTRA等,已经在大量文本上学习了丰富的语言表示,可以用于NER任务的微调。
  5. 特征提取

    • 在深度学习模型中,特征提取通常是通过词嵌入来实现的,这些嵌入捕获了单词的语义和语法信息。
  6. 上下文信息

    • NER任务通常需要考虑上下文信息,因为实体的识别和分类可能依赖于周围的单词或短语。
  7. 挑战

    • 一些NER任务的挑战包括处理歧义、跨语言实体识别、处理未登录词(OOV,即在训练集中未出现过的词)等。
  8. 应用

    • NER在许多领域都有应用,如新闻分析、生物医学文本处理、法律文档分析、社交媒体监控等。
  9. 工具和库

    • 存在许多开源库和工具,如spaCy、NLTK、Stanford NLP等,它们提供了用于NER任务的预训练模型和训练框架。

NER是自然语言处理中的基础任务之一,随着技术的发展,NER的准确性和应用范围都在不断扩大。

相关文章
|
11月前
|
机器学习/深度学习 自然语言处理 监控
命名实体识别(Named Entity Recognition, NER)
命名实体识别(NER)是自然语言处理的重要任务,旨在从文本中识别并分类特定实体,如人名、地点、组织等。通过BIO等标注模式,利用HMM、CRF及深度学习模型如RNN、LSTM、Transformer等进行实体识别。预训练模型如BERT显著提升了NER的性能。NER广泛应用于新闻分析、生物医学等领域,是信息提取、知识图谱构建等任务的基础。
1308 3
|
6月前
|
存储 人工智能 监控
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
5815 65
|
11月前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
634 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习中的正则化技术及其对模型性能的影响
【8月更文挑战第26天】本文将深入探讨深度学习领域中的正则化技术,并分析其如何塑造模型性能。我们将从理论出发,逐步引导读者理解不同正则化方法背后的原理,并通过实例展示它们在实际问题中的应用效果。文章旨在启发读者思考如何在特定的深度学习任务中选择合适的正则化策略,以优化模型的表现。
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖
YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖
510 1
YOLOv11改进策略【注意力机制篇】| EMA注意力 即插即用模块,提高远距离建模依赖
|
数据采集 并行计算 PyTorch
【已解决】RuntimeError: DataLoader worker (pid 263336) is killed by signal: Terminated.
【已解决】RuntimeError: DataLoader worker (pid 263336) is killed by signal: Terminated.
|
机器学习/深度学习 传感器 自然语言处理
【博士每天一篇文献-综述】A Systematic Review of Echo State Networks from Design to Application
本文系统回顾了回声状态网络(ESN)从设计到应用的全过程,探讨了其在多个领域的实际应用,并分析了不同结构的ESN模型如经典ESN、DeepESN和组合模型的性能,以及它们在时间序列预测和动态系统建模中的有效性。
212 1
【博士每天一篇文献-综述】A Systematic Review of Echo State Networks from Design to Application
|
机器学习/深度学习 自然语言处理
【机器学习】如何进行中文命名实体识别?(面试回答)
中文命名实体识别的基本概念、分类、识别思想、实体标注方法以及常见的识别方法,包括基于规则、基于统计和基于深度学习的方法。
227 1
【机器学习】如何进行中文命名实体识别?(面试回答)
|
监控 Linux Shell
Linux系统之nice命令的基本使用
【7月更文挑战第10天】Linux系统之nice命令的基本使用
307 2
|
缓存 自然语言处理 大数据
ModelScope问题之运行模型报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
2045 0