FunAudioLLM:探索音频基座大模型在AI应用中的新境界

简介: FunAudioLLM:探索音频基座大模型在AI应用中的新境界

FunAudioLLM:探索音频基座大模型在AI应用中的新境界

最近我看了一下通义语音团队最新开源的音频基座大模型FunAudioLLM。这个大模型可不得了,它包含了SenseVoice和CosyVoice两大模型,一个负责多语言音频理解,另一个则专注于多语言音频生成。今天,我就来给大家详细说说这两个模型究竟怎么样,以及我在评测活动中的一些体验。

FunAudioLLM是什么

FunAudioLLM是阿里巴巴通义实验室推出的开源语音大模型项目,包含SenseVoice和CosyVoice两个模型。SenseVoice擅长多语言语音识别和情感辨识,支持超过50种语言,特别在中文和粤语上表现优异。CosyVoice则专注于自然语音生成,能够控制音色和情感,支持中英日粤韩五种语言。FunAudioLLM适用于多语言翻译、情绪语音对话等场景。相关模型和代码已在Modelscope和Huggingface平台开源。
image.png

unAudioLLM的项目地址

项目官网:https://fun-audio-llm.github.io/
CosyVoice 在线体验:https://www.modelscope.cn/studios/iic/CosyVoice-300M
SenseVoice 在线体验:https://www.modelscope.cn/studios/iic/SenseVoice
GitHub仓库:https://github.com/FunAudioLLM
arXiv技术论文:https://arxiv.org/abs/2407.04051

FunAudioLLM的应用场景

开发者和研究人员:使用FunAudioLLM进行语音识别、语音合成、情感分析等领域的研究和开发。
企业用户:在客户服务、智能助手、多语言翻译等业务场景中应用FunAudioLLM,提高效率和用户体验。
内容创作者:使用FunAudioLLM生成有声读物或播客,丰富内容形式,吸引更多听众。
教育领域:用于语言学习、听力训练等教育应用,提高学习效率和兴趣。
残障人士:帮助视障人士通过语音交互获取信息,提升生活便利性。

image.png

SenseVoice多语言音频理解大模型

先来聊聊SenseVoice吧。这个模型可是个“听力”高手,特别是在中文和粤语上,它的多语言语音识别性能比Whisper强了不止一星半点儿,足足提升了50%!而且,它的推理速度还飞快,比Whisper快了15倍。这就意味着,同样的时间里,SenseVoice能处理更多的音频数据,简直就是效率小能手!
image.png

除了语音识别,SenseVoice还能进行情绪识别和音频事件检测。有时候,我会给模型喂一些带有不同情绪的语音样本,比如开心的、生气的、难过的,它都能准确识别出来。有一次,我故意给它放了一段平淡无奇的语音,想看看它会不会出错。结果呢?这家伙居然也能准确地告诉我,这段语音里的情绪是“中立”的。真是神了!
image.png

CosyVoice多语言音频生成大模型

接下来,咱们再来看看CosyVoice吧。这个模型可是个“发音”专家,它经过了超过17万小时的多语言音频数据训练,学会了如何控制音色和情感。无论你想要哪种语言的语音,它都能给你模拟得惟妙惟肖。

记得有一次,我用CosyVoice生成了一段英语语音。听完后,我差点以为那就是一个地道的英国人在说话呢!还有一次,我尝试了跨语言声音合成,让它用德语的发音来说一段中文的话。结果也是让人惊艳,那发音简直跟德国人说的一模一样!
9da4e2a8f3a750f8987d0c19ea31dc07_overview-sensevoice.png

总结

总的来说,FunAudioLLM是一款非常强大的音频基座大模型,无论是在音频理解还是音频生成方面都表现出色。通过参与这次评测活动,我深刻体验到了它的强大之处。我相信,随着更多的人参与到评测活动中来,我们将会看到更多关于FunAudioLLM的创新应用。同时,我也期待未来能看到更多像FunAudioLLM这样的开源项目,为人工智能领域带来更多的可能性。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
打赏
0
0
0
0
819
分享
相关文章
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
本文系统对比了扩散模型与Flow Matching两种生成模型技术。扩散模型通过逐步添加噪声再逆转过程生成数据,类比为沙堡的侵蚀与重建;Flow Matching构建分布间连续路径的速度场,如同矢量导航系统。两者在数学原理、训练动态及应用上各有优劣:扩散模型适合复杂数据,Flow Matching采样效率更高。文章结合实例解析两者的差异与联系,并探讨其在图像、音频等领域的实际应用,为生成建模提供了全面视角。
57 1
大模型+运维:让AI帮你干脏活、累活、重复活!
大模型+运维:让AI帮你干脏活、累活、重复活!
83 19
RuoYi AI:1人搞定AI中台!开源全栈式AI开发平台,快速集成大模型+RAG+支付等模块
RuoYi AI 是一个全栈式 AI 开发平台,支持本地 RAG 方案,集成多种大语言模型和多媒体功能,适合企业和个人开发者快速搭建个性化 AI 应用。
79 21
RuoYi AI:1人搞定AI中台!开源全栈式AI开发平台,快速集成大模型+RAG+支付等模块
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22067 6
最新AI大模型数据集解决方案:分享两种AI高质量代码数据集生产方案
本文分享了两种构建高质量AI代码数据集的解决方案。第一种是传统方式,结合动态住宅代理与手动处理,通过分页读取和数据清洗生成结构化数据;第二种是利用Web Scraper API工具,实现自定义配置、自动化抓取及云端存储。两种方法各具优势,适合不同需求和技术水平的团队。同时,文章还提供了专属优惠福利,助力提升数据采集效率,为AI大模型训练提供支持。
51 5
最新AI大模型数据集解决方案:分享两种AI高质量代码数据集生产方案
如何在云效中使用 DeepSeek 等大模型实现 AI 智能评审
除了代码智能补全外,AI 代码智能评审是 DevOps 领域受开发者广泛关注的另一场景了。本文,我们将结合云效代码管理 Codeup、流水线 Flow 和 DeepSeek,分享一种企业可快速自主接入,即可实现的 AI 智能评审解决方案,希望给大家一些启发。
AI 大模型+智能客服:自动识别客户意图,实现高效沟通
本方案旨在介绍如何部署 AI 大模型实现对客户对话的自动化分析,支持多人、多语言识别,精准识别客户意图、评估服务互动质量,实现数据驱动决策。
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
37 8
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等