人工智能平台PAI使用问题之如何指定线上分区表的分区格式

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI的EasyRec主流支持的算法有哪些类别,每个类别下分别有哪些?

机器学习PAI的EasyRec主流支持的算法有哪些类别,每个类别下分别有哪些?



参考答案:

要不就是文件被删除,要么就是文件路径有问题



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586364



问题二:目前比较好用的机器学习PAI推荐算法有哪些?

目前比较好用的机器学习PAI推荐算法有哪些?



参考答案:

阿里云机器学习PAI平台提供了丰富的推荐算法工具,包括EasyRec算法库和推荐Plus模块。EasyRec算法库中包含了DeepFM、DIN、MultiTower及DSSM等经典的推荐排序和召回算法。这些算法能够帮助您在PAI平台上快速训练推荐算法模型、验证模型效果以及进行模型部署。

另一方面,推荐Plus模块主要针对召回算法进行了优化。目前,它推荐了三个主要的召回算法,分别是Etrec(i2i)、GeaphSage(u2i)和ALS(u2i)。其中,i2i和u2i的主要区别在于,i2i是已有一定Item的推荐系统中推荐相似的Item。

此外,深度学习在搜广推领域的应用也已经非常深入,并且给各种场景的效果带来了巨大的提升。因此,在选择适合的推荐算法时,您还可以考虑使用深度学习相关的算法。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586362



问题三:请教一下机器学习PAI -Dinput_table,如果是线上分区表,指定分区的格式?

请教一下机器学习PAI -Dinput_table,如果是线上分区表,指定分区的格式?



参考答案:

在Dataworks中使用EasyRec时,如果输入的表是线上分区表,可以通过在-Dinput_table参数中指定分区的格式来进行设置。具体的格式可以根据表的分区字段类型和分区值的格式来确定,常见的格式包括日期格式(如yyyy-MM-dd)、时间戳格式(如yyyy-MM-dd HH:mm:ss)等。根据具体情况,可以使用类似以下的格式进行指定:

-Dinput_table=表名/分区字段=分区值

例如,如果分区字段为date,分区值为2020-01-01,则可以使用以下格式进行指定:

-Dinput_table=表名/date=2020-01-01

需要根据实际情况进行具体的分区格式指定



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586358



问题四:请教下机器学习PAI,训练如果想用3个worker是不是就要配4个worker?

请教下机器学习PAI,node1如果只做eval,训练如果想用3个worker是不是就要配4个worker?

我看现在node1好像只做eval?



参考答案:

是的



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586357



问题五:我机器学习PAI的seq1,seq2特征有进入senet吗?

我机器学习PAI的seq1,seq2特征有进入senet吗?比如我写的配置类似

feature_groups {

group_name: "all"

feature_names: "a"

feature_names: "b"

feature_names: "c"

feature_names: "d"

wide_deep: DEEP

sequence_features: {

group_name: "seq1"

allow_key_search: false

need_key_feature:false

allow_key_transform:false

transform_dnn:false

tf_summary: false

seq_att_map: {

key: "item1"

hist_seq: "item_seq1"

}

}

sequence_features: {

group_name: "seq2"

allow_key_search: false

need_key_feature:false

allow_key_transform:false

transform_dnn:false

tf_summary: false

seq_att_map: {

key: "item2"

hist_seq: "item_seq2"

}

}

backbone {

blocks {

name: 'all'

inputs {

feature_group_name: 'all'

}

input_layer {

only_output_feature_list: true

}

}

blocks {

name: "senet"

inputs {

block_name: "all"

}

keras_layer {

class_name: 'SENet'

senet {

reduction_ratio: 4

}

}

}



参考答案:

你这样写就是做要attention之后再进senet,一般sequence不需要进senet,建议分开配



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586352

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
23天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
2月前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
66 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习在医疗诊断中的应用
【9月更文挑战第32天】随着科技的不断发展,人工智能和机器学习已经在许多领域得到了广泛应用。在医疗领域,它们正在改变着医生和患者的生活。通过分析大量的医疗数据,AI可以帮助医生更准确地诊断疾病,预测患者的病情发展,并提供个性化的治疗方案。本文将探讨人工智能和机器学习在医疗诊断中的具体应用,包括图像识别、自然语言处理和预测分析等方面。我们还将讨论AI技术面临的挑战和未来的发展趋势。
|
26天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
68 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
28天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
56 0

相关产品

  • 人工智能平台 PAI