微服务数据问题之MetaQ和Kafka在选择读写技术时考虑因素如何解决

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 微服务数据问题之MetaQ和Kafka在选择读写技术时考虑因素如何解决

问题一:MetaQ和Kafka在选择读写技术时有哪些考虑因素?


MetaQ和Kafka在选择读写技术时有哪些考虑因素?


参考回答:

MetaQ和Kafka在选择读写技术时考虑了多个因素。对于MetaQ来说,由于它主要用于满足阿里巴巴内部复杂的应用场景,对数据的可靠性和实时性要求较高,因此选择了更适合小数据量、高频率读写的mmap技术。而对于Kafka来说,它主要用于日志传输和海量数据处理,对数据的正确度要求相对较低,更注重数据传输的效率,因此更倾向于使用sendfile进行大量数据的读写操作。这些选择都是基于各自的应用场景和性能需求做出的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615129


问题二:为什么Chatbot需要大语言模型+向量数据库?


为什么Chatbot需要大语言模型+向量数据库?


参考回答:

ChatGPT的横空出世,通过大语言模型(LLM)让人们看到了生成式AI能实现到和人类语言高度相仿的语言表达能力,AI不再遥不可及而已经可以走进人类的工作和生活,这使得沉寂一段时间的AI领域重新焕发了能量,无数的从业者正趋之若鹜地投身于下一个改变时代的机会;据不完全统计,在短短的4个月时间内,美国已经完成了超4000笔的生成式AI的行业融资。生成式AI已经成为了资本和企业都无法忽视的下一代的技术密码,而其对于底层的基础设施能力提供了更高的要求。

大模型能够回答较为普世的问题,但是若要服务于垂直专业领域,会存在知识深度和时效性不足的问题,那么企业如何抓住机会并构建垂直领域服务?目前有两种模式,第一种是基于大模型之上做垂直领域模型的Fine Tune,这个综合投入成本较大,更新的频率也较低,并不适用于所有的企业;第二种就是在向量数据库中构建企业自有的知识资产,通过大模型+向量数据库来搭建垂直领域的深度服务,本质是使用数据库进行提示工程(Prompt Engineering)。以法律行业为例,基于垂直类目的法律条文和判例,企业可以构建垂直领域的法律科技服务。如法律科技公司Harvey,正在构建“律师的副驾驶”(Copilot for Lawyer)以提高法律条文的起草和研究服务。

将企业知识库文档和实时信息通过向量特征提取然后存储到向量数据库,结合LLM大语言模型可以让Chatbot(聊天机器人)的回答更具专业性和时效性,构建企业专属Chatbot。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615130


问题三:生成式AI为何能够重新焕发AI领域的活力?


生成式AI为何能够重新焕发AI领域的活力?


参考回答:

ChatGPT的横空出世,让人们通过大语言模型(LLM)看到了生成式AI能实现到和人类语言高度相仿的语言表达能力,使得AI不再遥不可及,已经可以走进人类的工作和生活。这重新焕发了AI领域的活力,吸引了无数从业者投身其中。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615131


问题四:企业如何抓住机会构建垂直领域服务?


企业如何抓住机会构建垂直领域服务?


参考回答:

企业可以通过两种模式抓住机会构建垂直领域服务。第一种是基于大模型之上做垂直领域模型的Fine Tune;第二种是在向量数据库中构建企业自有的知识资产,通过大模型+向量数据库来搭建垂直领域的深度服务。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615133


问题五:如何提高Chatbot回答的专业性和时效性?


如何提高Chatbot回答的专业性和时效性?


参考回答:

将企业知识库文档和实时信息通过向量特征提取后存储到向量数据库,再结合LLM大语言模型,可以让Chatbot的回答更具专业性和时效性。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615134

相关文章
|
10天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
18天前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
55 3
|
5天前
|
Cloud Native 云计算 Docker
云原生技术的崛起:从容器化到微服务架构
云原生技术的崛起:从容器化到微服务架构
|
10天前
|
监控 API 微服务
后端技术演进:从单体架构到微服务的转变
随着互联网应用的快速增长和用户需求的不断演化,传统单体架构已难以满足现代软件开发的需求。本文深入探讨了后端技术在面对复杂系统挑战时的演进路径,重点分析了从单体架构向微服务架构转变的过程、原因及优势。通过对比分析,揭示了微服务架构如何提高系统的可扩展性、灵活性和维护效率,同时指出了实施微服务时面临的挑战和最佳实践。
30 7
|
11天前
|
Kubernetes Cloud Native Docker
云原生技术探索:容器化与微服务的实践之道
【10月更文挑战第36天】在云计算的浪潮中,云原生技术以其高效、灵活和可靠的特性成为企业数字化转型的重要推手。本文将深入探讨云原生的两大核心概念——容器化与微服务架构,并通过实际代码示例,揭示如何通过Docker和Kubernetes实现服务的快速部署和管理。我们将从基础概念入手,逐步引导读者理解并实践云原生技术,最终掌握如何构建和维护一个高效、可扩展的云原生应用。
|
1月前
|
Cloud Native API 持续交付
利用云原生技术优化微服务架构
【10月更文挑战第13天】云原生技术通过容器化、动态编排、服务网格和声明式API,优化了微服务架构的可伸缩性、可靠性和灵活性。本文介绍了云原生技术的核心概念、优势及实施步骤,探讨了其在自动扩展、CI/CD、服务发现和弹性设计等方面的应用,并提供了实战技巧。
|
1月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
1月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
|
1月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
47 1
|
1月前
|
Kubernetes Cloud Native 云计算
云原生时代的技术演进:Kubernetes与微服务架构的完美融合
随着云计算技术的飞速发展,云原生概念逐渐深入人心。本文将深入探讨云原生技术的核心——Kubernetes,以及它如何与微服务架构相结合,共同推动现代软件架构的创新与发展。文章不仅剖析了Kubernetes的基本工作原理,还通过实际案例展示了其在微服务部署和管理中的应用,为读者提供了一条清晰的云原生技术应用路径。
77 2
下一篇
无影云桌面