基于离散差分法的复杂微分方程组求解matlab数值仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本程序使用离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。经MATLAB2022a测试验证有效。

1.程序功能描述
基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。

1.png

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg
11.jpeg

3.核心程序

```% ʼ
L = 0.05; % ռ䳤
time = 1e-8; %ʱ 䳤
Nz = 10; % ռ
Nt = 10; %ʱ
dt = time/Nt;%t΢ ֵ ۼ
dz = L/Nz;%z΢ ֵ ۼ

N1 = zeros(Nz,Nt);
N2 = zeros(Nz,Nt);
N3 = zeros(Nz,Nt);
N4 = zeros(Nz,Nt);
N1_Yb = zeros(Nz,Nt);
N2_Yb = zeros(Nz,Nt);
Ps = zeros(Nz,Nt);

PASE_plus = zeros(M,Nz,Nt);
PASE_minus = zeros(M,Nz,Nt);
Pp_plus = zeros(Nz,Nt);
Pp_minus = zeros(Nz,Nt);

G = zeros(Nz,Nt);
NF = zeros(Nz,Nt);

% 1 ʽ 1 ϵ IJ ʾ
W11 = FpO13_vp/(AchVp);
W12 = Fs
O12_vs/(AchVs);
for i = 1:M
W13(i) = F_ASE_vj(i) O12_vj(i) / (Ach*Vj(i));
end

W14 = FsO21_vs/(AchVs);
for i = 1:M
W15(i) = F_ASE_vj(i)
O21_vj(i) / (AchVj(i));
end

W16 = FpO31_vp/(Ach*Vp);

% 1 ʽ 2 ϵ IJ ʾ
W21 = FsO12_vs/(Ach*Vs);

for i = 1:M
W22(i) = F_ASE_vj(i) O12_vj(i) / (AchVj(i));
end
W23 = Fs
O21_vs/(AchVs);

for i = 1:M
W24(i) = F_ASE_vj(i) O21_vj(i) / (Ach*Vj(i));
end

% 1 ʽ 3 ϵ IJ ʾ
W31 = FpO13_vp/(AchVp);
W32 = Fp
O31_vp/(AchVp);

% 1 ʽ 4 ϵ IJ ʾ
W41 = FpO12Yb_vp/(AchVp);
W42 = Fp
O21Yb_vp/(AchVp);
Ps(1,:) = 0.001ones(1,Nt);
Pp_plus(1,:) = 0.06
ones(1,Nt);
Pp_minus(1,:) = 0.04*ones(1,Nt);

for j = 1:Nt-1
for i = 1:Nz-1
% 1ʽ 1
N1(i,j+1) = N1(i,j) + ...
dt( -1(W11(Pp_plus(i,j) + Pp_minus(i,j)) + W12Ps(i,j) + sum(W13.(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))N1(i,j) +...
(A21 + W14Ps(i,j) + sum(W15.(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))N2(i,j) + ...
C2
N2(i,j)^2 + W16(Pp_plus(i,j) + Pp_minus(i,j))N3(i,j) + C3N3(i,j)^2 - C14N1(i,j)N4(i,j)+...
-1
KtrN2_Yb(i,j)N1(i,j)+KbaN1_Yb(i,j)N3(i,j) );

    %      1ʽ  2
    N2(i,j+1) = N2(i,j) + ...   
                dt*( (W21*Ps(i,j)+sum(W22.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))*N1(i,j) +...
                  -1*(A21 + W23*Ps(i,j) + sum( W24.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))' ))*N2(i,j) +...
                      A32*N3(i,j) - 2*C2*N2(i,j)^2 + 2*C14*N1(i,j)*N4(i,j) );

    %      1ʽ  3
    N3(i,j+1) = N3(i,j) + ...    
                dt*( W31*(Pp_plus(i,j) + Pp_minus(i,j))*N1(i,j) - A32*N3(i,j) - W32*(Pp_plus(i,j) + Pp_minus(i,j))*N3(i,j) -...
                     2*C3*N3(i,j)^2 + A43*N4(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j) );

    %      1ʽ  4
    N1_Yb(i,j+1) = N1_Yb(i,j) + ...
                   dt*(-1*W41*(Pp_plus(i,j) + Pp_minus(i,j))*N1_Yb(i,j) + W42*(Pp_plus(i,j) + Pp_minus(i,j))*N2_Yb(i,j) +...
                          A21Yb*N2_Yb(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j));

    %      1ʽ  5
    N4(i,j+1) = NEr - (N1(i,j+1) + N2(i,j+1) + N3(i,j+1)); 

    %      1ʽ  6
    N2_Yb(i,j+1) = NYb - N1_Yb(i,j+1);

    if N1(i,j+1) > NEr,N1(i,j+1) = NEr;end
    if N2(i,j+1) > NEr,N2(i,j+1) = NEr;end    
    if N3(i,j+1) > NEr,N3(i,j+1) = NEr;end    
    if N4(i,j+1) > NEr,N4(i,j+1) = NEr;end    
    if N1_Yb(i,j+1) > NYb,N1_Yb(i,j+1) = NYb;end
    if N2_Yb(i,j+1) > NYb,N2_Yb(i,j+1) = NYb;end          

    if N1(i,j+1) < 0,N1(i,j+1) = 0;end
    if N2(i,j+1) < 0,N2(i,j+1) = 0;end    
    if N3(i,j+1) < 0,N3(i,j+1) = 0;end    
    if N4(i,j+1) < 0,N4(i,j+1) = 0;end    
    if N1_Yb(i,j+1) < 0,N1_Yb(i,j+1) = 0;end
    if N2_Yb(i,j+1) < 0,N2_Yb(i,j+1) = 0;end             


    %     Ϸ  ̼   õ   N1  N2  N3  N4  N1Yb  N2Yb    
    %      2
    Pp_plus(i+1,j)   =  Pp_plus(i,j)  + dz*(-Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_plus(i,j)  - ap*Pp_plus(i,j));

    Pp_minus(i+1,j)  =  Pp_minus(i,j) + dz*(Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_minus(i,j) + ap*Pp_plus(i,j));

    Ps(i+1,j)        =  Ps(i,j)     + dz*(Fs*( O21_vs*N2(i,j) - O12_vs*N1(i,j) )*Ps(i,j) - as*Ps(i,j)); 

    for ii = 1:M
        PASE_plus(ii,i+1,j)  =    PASE_plus(ii,i,j)+dz*(F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_plus(ii,i,j) +...
                                  2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)-as*PASE_plus(ii,i,j));

        PASE_minus(ii,i+1,j) =   PASE_minus(ii,i,j)+dz*(-1*F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_minus(ii,i,j) -...
                                 2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)+as*PASE_minus(ii,i,j));            
    end

    if Pp_plus(i+1,j)    < 0,Pp_plus(i+1,j)     = 0;end
    if Pp_minus(i+1,j)   < 0,Pp_minus(i+1,j)    = 0;end
    if Ps(i+1,j)         < 0,Ps(i+1,j)          = 0;end        

    %ͨ    ̬    õ Pp+  Pp-  Pase+  Pase-  Ps

end
AI 代码解读

end

for z = 1:Nz
for t = 1:Nt
PASE_plus2(z,t) = sum(PASE_plus(:,z,t));
PASE_minus2(z,t) = sum(PASE_minus(:,z,t));
end
end

for z = 1:Nz
for t = 1:Nt
G(z,t) = 10*log10(Ps(z,t)/Ps(1,1));
end
end

for z = 1:Nz
for t = 1:Nt
NF(z,t) = 10log10(1/G(z,t) + PASE_plus2(z,t)/(G(z,t)Vs*DVs) );
end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Pp_plus2 = interp1(dz:dz:L,Pp_plus(1:end,Nz),0:dz/10:L,'cubic');
Pp_minus2 = interp1(dz:dz:L,Pp_minus(1:end,Nz),0:dz/10:L,'cubic');

figure;
subplot(211);
plot(0:dz/10:L,Pp_plus2,'g-','LineWidth',3);
xlabel('z');
ylabel('Pp+(Z)');
title('Pp+(Z)&z');
grid on;
subplot(212);
plot(L:-dz/10:0,Pp_minus2,'m--','LineWidth',2);
xlabel('z');
ylabel('Pp-(Z)');
title('Pp-(Z)&z');
grid on;
16_015m

```

4.本算法原理
本课题求解的方程组表达式如下:

996ad47c0a464ea7e85e3354fde0347e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ba8a8b5d26bfb37d8ac099cba85451c6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。
AI 代码解读
目录
打赏
0
2
2
0
206
分享
相关文章
四自由度SCARA机器人的运动学和动力学matlab建模与仿真
本课题深入研究SCARA机器人系统,提出其动力学与运动学模型,并基于MATLAB Robotics Toolbox建立四自由度SCARA机器人仿真对象。通过理论结合仿真实验,实现了运动学正解、逆解及轨迹规划等功能,完成系统实验和算法验证。SCARA机器人以其平面关节结构实现快速定位与装配,在自动生产线中广泛应用,尤其在电子和汽车行业表现优异。使用D-H参数法进行结构建模,推导末端执行器的位姿,建立了机器人的运动学方程。
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
基于惯性加权PSO优化的目标函数最小值求解matlab仿真
本程序基于惯性加权粒子群优化(IWPSO)算法,在MATLAB2022A上实现目标函数最小值求解的仿真。核心代码通过主循环迭代更新粒子速度和位置,动态调整惯性权重,平衡全局探索与局部开发。最终输出最优解及适应度变化图,并绘制等高线图展示优化过程。完整程序运行后无水印。 IWPSO改进了基本PSO算法,通过引入惯性权重因子,提高了复杂优化问题的搜索效率和精度,避免早熟收敛,增强了全局寻优能力。
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
基于GWO灰狼优化的多目标优化算法matlab仿真
本程序基于灰狼优化(GWO)算法实现多目标优化,适用于2个目标函数的MATLAB仿真。使用MATLAB2022A版本运行,迭代1000次后无水印输出结果。GWO通过模拟灰狼的社会层级和狩猎行为,有效搜索解空间,找到帕累托最优解集。核心步骤包括初始化狼群、更新领导者位置及适应值计算,确保高效探索多目标优化问题。该方法适用于工程、经济等领域复杂决策问题。
分别通过LS和RML进行模型参数辨识matlab仿真
本程序通过最小二乘法(LS)和递归最大似然估计(RML)进行模型参数辨识,并在MATLAB2022A中仿真。仿真输出包括参数辨识误差及收敛值。程序展示了两种方法的参数估计值及其误差收敛情况,适用于控制系统设计与分析。最小二乘法适合离线批量处理,而RML则适用于实时在线处理。核心代码实现了LS辨识,并绘制了参数估计值和误差变化图。
基于MATLAB的PEF湍流风场生成器模拟与仿真
本课题基于MATLAB 2022a开发PEF(Primitive Equations Formulation)湍流风场生成器,模拟大气流动和气象现象。PEF模型考虑地球旋转效应、层结稳定性及湍流混合等复杂物理过程,适用于大尺度天气系统研究。核心程序采用高斯分布尾流模型,计算尾流中心到转子中心的距离,并绘制风速分布图。仿真结果展示了不同条件下的风场特征,无水印输出。该模型在天气预报和气候研究中具有重要应用价值。
基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法matlab仿真
本项目基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法,实现MATLAB仿真,并对比Kawasaki sampler、IMExpert、IMUnif和IMBayesOpt四种方法。核心在于利用历史采样信息动态调整MCMC参数,以高效探索复杂概率分布。完整程序在MATLAB2022A上运行,展示T1-T7结果,无水印。该算法结合贝叶斯优化与MCMC技术,通过代理模型和采集函数优化采样效率。
基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面
本项目展示了一种基于图像形态学处理的移动物体目标跟踪和质心提取算法。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释及操作视频。算法通过多帧图像像素值求平均、中值法或高斯混合模型估计背景,结合形态学处理(开闭运算、阈值处理)去除噪声并优化目标检测,提高准确性。颜色直方图匹配用于目标跟踪,结构元素膨胀操作扩大搜索范围,增强鲁棒性。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等