Transformers 4.37 中文文档(五十六)(4)https://developer.aliyun.com/article/1565306
FlaxRobertaPreLayerNormForCausalLM
class transformers.FlaxRobertaPreLayerNormForCausalLM
( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
config
(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有语言建模头的 RobertaPreLayerNorm 模型(隐藏状态输出的线性层),例如用于自回归任务。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如从 PyTorch 模型下载、保存和转换权重)。
这个模型也是一个flax.linen.Module的子类。将其用作常规的 Flax linen Module,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,这个模型支持 JAX 的固有特性,比如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
) — 输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选) — 避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:
- 1 代表未被“掩盖”的标记,
- 0 代表被“掩盖”的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于句子 A的标记,
- 1 对应于句子 B的标记。
- 什么是 token type IDs?
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。head_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 用于使注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部是
not masked
。 - 0 表示头部是
masked
。
return_dict
(bool
,可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。
返回值
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出,一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)的元组。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)的元组。
交叉注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True
时相关。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(见past_key_values
输入)。
FlaxRobertaPreLayerNormPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> model = FlaxRobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> # retrieve logts for next token >>> next_token_logits = outputs.logits[:, -1]
FlaxRobertaPreLayerNormForMaskedLM
class transformers.FlaxRobertaPreLayerNormForMaskedLM
( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
config
(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
RoBERTa-PreLayerNorm 模型顶部带有语言建模
头。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般使用和行为相关的所有事项。
最后,此模型支持 JAX 的内在特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
参数
input_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 表示
未被掩盖
的标记, - 0 表示
被掩盖
的标记。
- 什么是注意力掩码?
token_type_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]
之间:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。head_mask
(numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- 用于使注意力模块中选定头部失效的掩码。掩码值选择在
[0, 1]`之间:
- 1 表示头部
未被掩盖
, - 0 表示头部
被掩盖
。
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(RobertaPreLayerNormConfig)和输入不同元素。
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)的 jnp.ndarray
) — 模型最后一层的隐藏状态的序列。pooler_output
(形状为(batch_size, hidden_size)的 jnp.ndarray
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。hidden_states
(tuple(jnp.ndarray)
, 可选的, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每个层的模型的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选的, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。
FlaxRobertaPreLayerNormPreTrainedModel
的前向方法覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> model = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits
FlaxRobertaPreLayerNormForSequenceClassification
class transformers.FlaxRobertaPreLayerNormForSequenceClassification
( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
config
(RobertaPreLayerNormConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
带有顶部序列分类/回归头(在池化输出之上的线性层)的 RobertaPreLayerNorm 模型,例如用于 GLUE 任务。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载、保存和从 PyTorch 模型转换权重)。
这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。
最后,这个模型支持内在的 JAX 特性,比如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选
) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
之间:
- 1 表示
未被掩码
的标记, - 0 表示
被掩码
的标记。
- 什么是注意力掩码?
token_type_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选
) — 段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]
之间:
- 0 对应于句子 A的标记,
- 1 对应于句子 B的标记。
- 什么是标记类型 ID?
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选
) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。head_mask
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选
) – 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选
,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选
,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
FlaxRobertaPreLayerNormPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> model = FlaxRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits
FlaxRobertaPreLayerNormForMultipleChoice
class transformers.FlaxRobertaPreLayerNormForMultipleChoice
( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
config
(RobertaPreLayerNormConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
RobertaPreLayerNorm 模型,顶部带有多选分类头(汇总输出上的线性层和 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型也是flax.linen.Module的子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。
最后,此模型支持 JAX 的内在特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 避免在填充标记索引上执行注意力的蒙版。蒙版值在[0, 1]
中选择:
- 1 表示
未被屏蔽
的标记, - 0 表示
被屏蔽
的标记。
- 注意力蒙版是什么?
token_type_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。head_mask
(numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选
) – 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
:
- 1 表示头部是
未屏蔽
, - 0 表示头部是
屏蔽
。
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。
logits
(jnp.ndarray
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(参见上面的 input_ids)。
分类分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxRobertaPreLayerNormPreTrainedModel
的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForMultipleChoice >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> model = FlaxRobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True) >>> outputs = model(**{k: v[None, :] for k, v in encoding.items()}) >>> logits = outputs.logits
FlaxRobertaPreLayerNormForTokenClassification
class transformers.FlaxRobertaPreLayerNormForTokenClassification
( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
config
(RobertaPreLayerNormConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
RobertaPreLayerNorm 模型,顶部带有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如从 PyTorch 模型下载、保存和转换权重)。
此模型也是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般使用和行为相关的所有事项。
最后,此模型支持 JAX 的固有特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
中:
- 1 表示未被掩盖的标记,
- 0 表示被掩盖的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]
中:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选定。head_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
:
- 1 表示头部“未被掩盖”,
- 0 表示头部“被掩盖”。
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或者一个torch.FloatTensor
元组(如果传递了return_dict=False
或者config.return_dict=False
)包括各种元素,取决于配置(RobertaPreLayerNormConfig)和输入。
logits
(形状为(batch_size, sequence_length, config.num_labels)
的jnp.ndarray
)— 分类分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或者config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxRobertaPreLayerNormPreTrainedModel
的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module
实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> model = FlaxRobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits
FlaxRobertaPreLayerNormForQuestionAnswering
class transformers.FlaxRobertaPreLayerNormForQuestionAnswering
( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
config
(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
RobertaPreLayerNorm 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算“跨度起始对数”和“跨度结束对数”)。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如从 PyTorch 模型下载、保存和转换权重)。
这个模型也是一个 flax.linen.Module 的子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,这个模型支持 JAX 的固有特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 对于“未屏蔽”的标记,为 1,
- 对于“屏蔽”的标记为 0。
- 什么是注意力掩码?
token_type_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]
之间:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。head_mask
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) – 用于使注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
:
- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包括根据配置(RobertaPreLayerNormConfig)和输入的各种元素。
start_logits
(jnp.ndarray
,形状为(batch_size, sequence_length)
) — 跨度起始分数(SoftMax 之前)。end_logits
(jnp.ndarray
,形状为(batch_size, sequence_length)
) — 跨度结束分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxRobertaPreLayerNormPreTrainedModel
的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在之后调用 Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> model = FlaxRobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="jax") >>> outputs = model(**inputs) >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits