Transformers 4.37 中文文档(四十五)(7)https://developer.aliyun.com/article/1565224
TFMobileBertForPreTraining
class transformers.TFMobileBertForPreTraining
( config *inputs **kwargs )
参数
config
(MobileBertConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
MobileBert 模型在预训练期间在顶部有两个头部:一个掩码语言建模
头部和一个下一个句子预测(分类)
头部。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,在使用子类化创建模型和层时,您无需担心这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示
未被屏蔽
的标记, - 0 表示
被屏蔽
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于一个句子 A的标记,
- 1 对应于一个句子 B的标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy 数组
或tf.Tensor
,可选) — 用于使自注意力模块中选择的头部失效的掩码。在[0, 1]
中选择的掩码值:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下使用,在图模式中将使用配置中的值。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式中将使用配置中的值。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式中该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
返回
transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput 或tuple(tf.Tensor)
transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,这取决于配置(MobileBertConfig)和输入。
prediction_logits
(形状为(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。seq_relationship_logits
(形状为(batch_size, 2)
的tf.Tensor
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续分数)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每个层输出的模型的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFMobileBertForPreTraining 前向方法,覆盖__call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2]
TFMobileBertForMaskedLM
class transformers.TFMobileBertForMaskedLM
( config *inputs **kwargs )
参数
config
(MobileBertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
MobileBert 模型顶部带有语言建模
头。
该模型继承自 TFPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
该模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典的第一个位置参数。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,因此在使用model.fit()
等方法时,您应该可以“轻松使用” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集所有输入张量的第一个位置参数:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 按照文档字符串中给定的顺序,一个长度可变的列表,其中包含一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个包含一个或多个与文档字符串中给定的输入名称相关联的输入张量的字典:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值为[0, 1]
:
- 1 表示
未被掩盖
的标记。 - 0 表示
被掩盖
的标记。
- 什么是注意力掩码?
token_type_ids
(Numpy 数组
或形状为(batch_size, sequence_length)
的tf.Tensor
,可选) — 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A令牌,
- 1 对应于句子 B令牌。
- 令牌类型 ID 是什么?
position_ids
(Numpy 数组
或形状为(batch_size, sequence_length)
的tf.Tensor
,可选) — 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?](…/glossary#position-ids)head_mask
(Numpy 数组
或形状为(num_heads,)
或(num_layers, num_heads)
的tf.Tensor
,可选) — 用于使自注意力模块的选定头部无效的掩码。选择的掩码值在[0, 1]
中:
- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式中该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。labels
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)索引设置为-100
的令牌将被忽略(掩码),损失仅计算具有标签的令牌
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,取决于配置(MobileBertConfig)和输入。
loss
(形状为(n,)
的tf.Tensor
,可选,其中 n 是非掩码标签的数量,当提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇令牌的分数)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每个层输出的模型的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFMobileBertForMaskedLM 的前向方法覆盖了__call__
特殊方法。
尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFMobileBertForMaskedLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForMaskedLM.from_pretrained("google/mobilebert-uncased") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf") >>> logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) >>> tokenizer.decode(predicted_token_id) 'paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(float(outputs.loss), 2) 0.57
TFMobileBertForNextSentencePrediction
class transformers.TFMobileBertForNextSentencePrediction
( config *inputs **kwargs )
参数
config
(MobileBertConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
MobileBert 模型,顶部带有下一个句子预测(分类)
头。
这个模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的通用方法,适用于所有模型(例如下载或保存,调整输入嵌入大小,修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典的第一个位置参数。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 一个只包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 按照文档字符串中给定的顺序,长度不等的列表,包含一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFNextSentencePredictorOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
) - 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.call
() 和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。 掩码值选在[0, 1]
:
- 1 用于未被
masked
的标记, - 0 用于被
masked
的标记。
- 什么是注意力掩码?
token_type_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 指示输入的第一部分和第二部分的段标记索引。 索引在[0, 1]
中选择:
- 0 对应一个 句子 A 标记,
- 1 对应一个 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。 选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选择的头部失效的掩码。 掩码值选在[0, 1]
:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。 如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 此参数仅在急切模式下使用,在图模式中将使用配置中的值。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 此参数仅在急切模式下使用,在图模式中将使用配置中的值。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。 此参数可以在急切模式下使用,在图模式中该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFNextSentencePredictorOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFNextSentencePredictorOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(MobileBertConfig)和输入而异的各种元素。
loss
(tf.Tensor
,形状为(n,)
,可选,其中 n 是非masked
标签的数量,当提供next_sentence_label
时返回) — 下一个句子预测损失。logits
(形状为(batch_size, 2)
的tf.Tensor
) - 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 继续得分)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) - 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出处的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFMobileBertForNextSentencePrediction 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
Transformers 4.37 中文文档(四十五)(9)https://developer.aliyun.com/article/1565226