Transformers 4.37 中文文档(四十六)(3)

简介: Transformers 4.37 中文文档(四十六)

Transformers 4.37 中文文档(四十六)(2)https://developer.aliyun.com/article/1565068


TFMPNetModel

class transformers.TFMPNetModel

< source >

( config *inputs **kwargs )

参数

  • config(MPNetConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 MPNet 模型变换器输出原始隐藏状态,没有特定的头部。

该模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型还是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

第二种格式得到支持的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用诸如model.fit()之类的方法时,对您来说应该“只需工作” - 只需以model.fit()支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您不需要担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< source >

( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutput or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1] 之间:
  • 1 表示头部是 未掩码
  • 0 表示标记是 掩码
  • 什么是注意力掩码?
  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选在 [0, 1] 之间:
  • 1 表示头部是 未掩码
  • 0 表示头部是 掩码
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(MPNetConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor)- 模型最后一层的隐藏状态序列。
  • hidden_statestuple(tf.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层的输出隐藏状态以及初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    用于计算自注意力头中加权平均值的注意力 softmax 之后的注意力权重。

TFMPNetModel 的前向方法覆盖了__call__特殊方法。

尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFMPNetModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetModel.from_pretrained("microsoft/mpnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state

TFMPNetForMaskedLM

class transformers.TFMPNetForMaskedLM

<来源>

( config *inputs **kwargs )

参数

  • config(MPNetConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

带有顶部语言建模头的 MPNet 模型。

该模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需传递”您的输入和标签,以任何model.fit()支持的格式传递!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个包含与文档字符串中给定的输入名称相关联的一个或多个输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 避免对填充标记索引执行注意力的掩码。选择的掩码值在[0, 1]中:
  • 1 表示未被“掩盖”的标记,
  • 对于被“掩盖”的标记为 0。
  • 什么是注意力掩码?
  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:
  • 1 表示头部未被“掩盖”,
  • 0 表示头部被“掩盖”。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels(形状为(batch_size, sequence_length)tf.Tensor可选)— 用于计算掩盖语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]中(请参阅input_ids文档字符串)。索引设置为-100的标记将被忽略(掩盖),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

返回值

transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(MPNetConfig)和输入的各种元素。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回,其中 n 是非屏蔽标签的数量)- 掩蔽语言建模(MLM)损失。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFMPNetForMaskedLM 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFMPNetForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForMaskedLM.from_pretrained("microsoft/mpnet-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)

TFMPNetForSequenceClassification

class transformers.TFMPNetForSequenceClassification

<来源>

( config *inputs **kwargs )

参数

  • config(MPNetConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部有一个序列分类/回归头的 MPNet 模型变压器(在池化输出的顶部有一个线性层),例如 GLUE 任务。

该模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,您应该可以“轻松地”使用 - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量:model(input_ids)
  • 一个长度不定的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定为[0, 1]
  • 对于未被masked的标记,值为 1,
  • 对于被masked的标记,值为 0。
  • 什么是注意力掩码?
  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值选定为[0, 1]
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为关联向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions。此参数仅在急切模式下可用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states。此参数仅在急切模式下可用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool可选,默认为False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels (tf.Tensor of shape (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回值

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(MPNetConfig)和输入。

  • loss (tf.Tensor of shape (batch_size, )可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFMPNetForSequenceClassification 前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFMPNetForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFMPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFMPNetForMultipleChoice

class transformers.TFMPNetForMultipleChoice

< source >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多项选择分类头的 MPNet 模型(在池化输出的顶部和 softmax 之上的线性层)例如用于 RocStories/SWAG 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典传递给第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:

  • 只有一个input_ids的张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。在[0, 1]中选择的掩码值:
  • 1 表示未被“掩盖”的标记,
  • 0 表示被“掩盖”的标记。
  • 什么是注意力掩码?
  • position_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置的索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:
  • 1 表示头部未被“掩盖”,
  • 0 表示头部被“掩盖”。
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数只能在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数只能在急切模式下使用,在图模式下将使用配置中的值。
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels(形状为(batch_size,)tf.Tensor可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]范围内,其中num_choices是输入张量第二维的大小。(参见上面的input_ids

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或者tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或者一个tf.Tensor的元组(如果传递了return_dict=False或者当config.return_dict=False时),包括根据配置(MPNetConfig)和输入的不同元素。

  • loss(形状为*(batch_size, )*的tf.Tensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, num_choices)tf.Tensor)— num_choices是输入张量的第二维。(参见上面的input_ids)。
    分类得分(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=True或者当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=True或者当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMPNetForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFMPNetForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForMultipleChoice.from_pretrained("microsoft/mpnet-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits


Transformers 4.37 中文文档(四十六)(4)https://developer.aliyun.com/article/1565072

相关文章
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
Transformers 4.37 中文文档(四十七)(5)
Transformers 4.37 中文文档(四十七)
59 12
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十七)(4)
Transformers 4.37 中文文档(四十七)
85 10
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十六)(1)
Transformers 4.37 中文文档(四十六)
21 2
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十七)(3)
Transformers 4.37 中文文档(四十七)
58 10
|
4月前
|
缓存 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十六)(5)
Transformers 4.37 中文文档(四十六)
40 7
|
4月前
|
存储 编解码 PyTorch
Transformers 4.37 中文文档(四十七)(1)
Transformers 4.37 中文文档(四十七)
31 6
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十七)(2)
Transformers 4.37 中文文档(四十七)
32 2
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十六)(4)
Transformers 4.37 中文文档(四十六)
24 1
|
4月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(四十六)(2)
Transformers 4.37 中文文档(四十六)
33 1
|
4月前
|
存储 PyTorch API
Transformers 4.37 中文文档(四十九)(5)
Transformers 4.37 中文文档(四十九)
78 1