Transformers 4.37 中文文档(四十四)(3)https://developer.aliyun.com/article/1565205
MegatronBertForNextSentencePrediction
class transformers.MegatronBertForNextSentencePrediction
( config )
参数
config
(MegatronBertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
MegatronBert 模型,顶部带有下一个句子预测(分类)
头。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示
未被掩码
的标记, - 0 表示
被掩码
的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, 可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
中:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。labels
(torch.LongTensor
of shape(batch_size,)
, 可选) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids
文档字符串)。索引应在[0, 1]
中:
- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
返回
transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(MegatronBertConfig)和输入的不同元素。
loss
(torch.FloatTensor
of shape(1,)
, 可选, 当提供next_sentence_label
时返回) — 下一个序列预测(分类)损失。logits
(torch.FloatTensor
,形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测分数(SoftMax 前的 True/False 继续分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出 + 每层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForNextSentencePrediction 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
MegatronBertForPreTraining
class transformers.MegatronBertForPreTraining
( config add_binary_head = True )
参数
config
(MegatronBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
MegatronBert 模型在预训练期间在顶部有两个头:一个 masked language modeling
头和一个 next sentence prediction (classification)
头。
该模型继承自 PreTrainedModel。查看超类文档以了解库实现的通用方法,如下载或保存模型、调整输入嵌入、修剪头等。
该模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
() 获取详细信息。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:
- 对于未被掩码的标记为
1
, - 对于被掩码的标记为
0
。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]
范围内:
- 0 对应于一个 句子 A 的标记,
- 1 对应于一个 句子 B 的标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选定在[0, 1]
范围内:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算被屏蔽的语言建模损失的标签。索引应该在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(被屏蔽),损失仅计算具有标签在[0, ..., config.vocab_size]
范围内的标记。next_sentence_label
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids
文档字符串)。索引应该在[0, 1]
范围内:
- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
kwargs
(Dict[str, any]
,可选,默认为 {}) — 用于隐藏已被弃用的旧参数。
返回
transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput
或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(MegatronBertConfig)和输入而异的各种元素。
loss
(可选,当提供了labels
时返回,形状为(1,)
的torch.FloatTensor
) — 作为被屏蔽的语言建模损失和下一个序列预测(分类)损失之和的总损失。prediction_logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。seq_relationship_logits
(torch.FloatTensor
,形状为(batch_size, 2)
) — 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 连续性分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出处的隐藏状态加上初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每一层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
MegatronBertForPreTraining 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegatronBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits
MegatronBertForSequenceClassification
class transformers.MegatronBertForSequenceClassification
( config )
参数
config
(MegatronBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
MegatronBert 模型变压器,顶部带有一个序列分类/回归头(池化输出的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
:
- 1 表示
not masked
的标记。 - 0 表示
masked
的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
:
- 0 对应于一个 句子 A 标记,
- 1 对应于一个 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, 可选) — 用于使自注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部未被掩码,
- 0 表示头部被掩码。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。return_dict
(bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
of shape(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(MegatronBertConfig)和输入。
loss
(torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 分类(如果config.num_labels==1
则为回归)损失。logits
(torch.FloatTensor
of shape(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出+每层的输出)。
每层模型的输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
单标签分类的示例:
>>> import torch >>> from transformers import AutoTokenizer, MegatronBertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-cased-345m", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss
多标签分类的示例:
>>> import torch >>> from transformers import AutoTokenizer, MegatronBertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-cased-345m", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = MegatronBertForSequenceClassification.from_pretrained( ... "nvidia/megatron-bert-cased-345m", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.sum( ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 ... ).to(torch.float) >>> loss = model(**inputs, labels=labels).loss
Transformers 4.37 中文文档(四十四)(5)https://developer.aliyun.com/article/1565208