Transformers 4.37 中文文档(四十四)(2)https://developer.aliyun.com/article/1565204
MegatronBERT
原文:
huggingface.co/docs/transformers/v4.37.2/en/model_doc/megatron-bert
概述
MegatronBERT 模型是由 Mohammad Shoeybi、Mostofa Patwary、Raul Puri、Patrick LeGresley、Jared Casper 和 Bryan Catanzaro 在使用模型并行训练多十亿参数语言模型的 Megatron-LM中提出的。
该论文的摘要如下:
最近在语言建模方面的工作表明,训练大型 Transformer 模型可以推动自然语言处理应用的最新技术。然而,非常大的模型由于内存限制可能会很难训练。在这项工作中,我们提出了训练非常大的 Transformer 模型的技术,并实现了一种简单、高效的层内模型并行方法,可以训练具有数十亿参数的 Transformer 模型。我们的方法不需要新的编译器或库更改,与管道模型并行性是正交的和互补的,并且可以通过在原生 PyTorch 中插入几个通信操作来完全实现。我们通过使用 512 个 GPU 收敛基于 Transformer 的模型,达到了 83 亿参数。与维持 39 TeraFLOPs 的强单 GPU 基线相比,我们在整个应用程序中维持了 15.1 PetaFLOPs,其扩展效率为 76%,这是峰值 FLOPs 的 30%。为了证明大型语言模型可以进一步推动技术的最新进展,我们训练了一个类似于 GPT-2 的 83 亿参数 Transformer 语言模型和一个类似于 BERT 的 39 亿参数模型。我们展示了在 BERT-like 模型中对层归一化的放置要特别注意,这对于随着模型规模的增长而实现性能提升至关重要。使用 GPT-2 模型,我们在 WikiText103(10.8,与 15.8 的 SOTA 困惑度相比)和 LAMBADA(66.5%,与 63.2%的 SOTA 准确率相比)数据集上取得了 SOTA 结果。我们的 BERT 模型在 RACE 数据集上取得了 SOTA 结果(90.9%,与 89.4%的 SOTA 准确率相比)。
这个模型是由jdemouth贡献的。原始代码可以在这里找到。该存储库包含了 Megatron 语言模型的多 GPU 和多节点实现。特别是,它包含了一种使用“张量并行”和“管道并行”技术的混合模型并行方法。
使用提示
我们提供了预训练的BERT-345M检查点,用于评估或微调下游任务。
要访问这些检查点,首先注册并设置 NVIDIA GPU 云(NGC)注册表 CLI。有关下载模型的更多文档,请参阅NGC 文档。
或者,您可以直接下载检查点:
BERT-345M-uncased:
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0_1_uncased.zip
BERT-345M-cased:
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0_1_cased.zip
一旦您从 NVIDIA GPU 云(NGC)获取了检查点,您必须将它们转换为 Hugging Face Transformers 和我们的 BERT 代码的端口可以轻松加载的格式。
以下命令允许您进行转换。我们假设文件夹models/megatron_bert
包含megatron_bert_345m_v0_1_{cased, uncased}.zip
,并且命令是从该文件夹内部运行的:
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
资源
- 文本分类任务指南
- 标记分类任务指南
- 问答任务指南
- 因果语言建模任务指南
- 掩码语言建模任务指南
- 多选任务指南
MegatronBertConfig
class transformers.MegatronBertConfig
( vocab_size = 29056 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True **kwargs )
参数
vocab_size
(int
, optional, defaults to 29056) — MEGATRON_BERT 模型的词汇表大小。定义了在调用 MegatronBertModel 时可以表示的不同标记的数量。hidden_size
(int
, optional, defaults to 1024) — 编码器层和池化器层的维度。num_hidden_layers
(int
, optional, defaults to 24) — Transformer 编码器中的隐藏层数量。num_attention_heads
(int
, optional, defaults to 16) — Transformer 编码器中每个注意力层的注意力头数量。intermediate_size
(int
, optional, defaults to 4096) — Transformer 编码器中“中间”(通常称为前馈)层的维度。hidden_act
(str
orCallable
, optional, defaults to"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。hidden_dropout_prob
(float
, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。attention_probs_dropout_prob
(float
, optional, defaults to 0.1) — 注意力概率的 dropout 比率。max_position_embeddings
(int
, optional, defaults to 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。type_vocab_size
(int
, optional, defaults to 2) — 在调用 MegatronBertModel 时传递的token_type_ids
的词汇表大小。initializer_range
(float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。layer_norm_eps
(float
, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。position_embedding_type
(str
, optional, defaults to"absolute"
) — 位置嵌入的类型。选择"absolute"
、"relative_key"
、"relative_key_query"
中的一个。对于位置嵌入,请使用"absolute"
。有关"relative_key"
的更多信息,请参考 Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"
的更多信息,请参考 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 Method 4。is_decoder
(bool
, optional, defaults toFalse
) — 模型是否用作解码器。如果为False
,则模型用作编码器。use_cache
(bool
, optional, defaults toTrue
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。
这是用于存储 MegatronBertModel 配置的配置类。根据指定的参数实例化 MEGATRON_BERT 模型,定义模型架构。使用默认值实例化配置将产生类似于 MEGATRON_BERT nvidia/megatron-bert-uncased-345m 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读来自 PretrainedConfig 的文档以获取更多信息。
示例:
>>> from transformers import MegatronBertConfig, MegatronBertModel >>> # Initializing a MEGATRON_BERT bert-base-uncased style configuration >>> configuration = MegatronBertConfig() >>> # Initializing a model (with random weights) from the bert-base-uncased style configuration >>> model = MegatronBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
MegatronBertModel
class transformers.MegatronBertModel
( config add_pooling_layer = True )
参数
config
(MegatronBertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
裸 MegatronBert 模型变压器输出原始隐藏状态,没有特定的头部。
这个模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。
该模型可以作为编码器(仅具有自注意力)以及解码器行为,此时在自注意力层之间添加了一层交叉注意力,遵循Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 所描述的架构。
要作为解码器行为,模型需要使用配置中的is_decoder
参数初始化为True
。要在 Seq2Seq 模型中使用,模型需要使用is_decoder
参数和add_cross_attention
都设置为True
进行初始化;然后期望一个encoder_hidden_states
作为前向传递的输入。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 表示未被
masked
的标记, - 0 表示被
masked
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。encoder_hidden_states
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选在[0, 1]
之间:
- 1 表示未被
masked
的标记, - 0 表示被
masked
的标记。
past_key_values
(tuple(tuple(torch.FloatTensor))
,长度为config.n_layers
,每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。
如果使用past_key_values
,用户可以选择仅输入最后一个形状为(batch_size, 1)
的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(MegatronBertConfig)和输入。
last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。pooler_output
(torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 经过用于辅助预训练任务的层进一步处理后的序列的第一个标记(分类标记)的最后一层隐藏状态。例如,对于 BERT 系列模型,这将返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是从预训练期间的下一个句子预测(分类)目标中训练的。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
模型在每一层的输出处的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 后用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回,或者当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True
在交叉注意力块中)可用(参见past_key_values
输入)以加速顺序解码。
MegatronBertModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例而不是这个,因为前者负责运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegatronBertModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertModel.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
MegatronBertForMaskedLM
class transformers.MegatronBertForMaskedLM
( config )
参数
config
(MegatronBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有语言建模
头的 MegatronBert 模型。
这个模型继承自 PreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
:
- 1 表示未被
masked
的标记, - 0 表示被
masked
的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块的特定头部失效的掩码。掩码值选择在[0, 1]
:
- 1 表示头部未被掩码,
- 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
(参见input_ids
文档字符串)设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含根据配置(MegatronBertConfig)和输入的各种元素。
loss
(torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出 + 每层的输出)。
模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
MegatronBertForMaskedLM 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegatronBertForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForMaskedLM.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels)
MegatronBertForCausalLM
class transformers.MegatronBertForCausalLM
( config )
参数
config
(MegatronBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
MegatronBert 模型在顶部带有一个 语言建模
头用于 CLM 微调。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
() 以获取详细信息。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 用于
未被掩码
的标记, - 0 用于被
masked
的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于一个 句子 A 标记,
- 1 对应于一个 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]
中:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。encoder_hidden_states
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。选择的掩码值在[0, 1]
中:
- 1 表示未被
masked
的标记。 - 0 表示被
masked
的标记。
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(被masked
),损失仅计算具有标签 n[0, ..., config.vocab_size]
的标记。past_key_values
(tuple(tuple(torch.FloatTensor))
,长度为config.n_layers
,每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。
如果使用past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(这些没有将其过去的键值状态提供给该模型的)的形状为(batch_size, 1)
的张量,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(MegatronBertConfig)和输入。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)- 语言建模损失(用于下一个标记预测)。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
模型在每个层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
交叉注意力 softmax 后的注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的torch.FloatTensor
元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True
时相关。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。
MegatronBertForCausalLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits
Transformers 4.37 中文文档(四十四)(4)https://developer.aliyun.com/article/1565207