Transformers 4.37 中文文档(四十九)(2)https://developer.aliyun.com/article/1565040
Nyströmformer
原始文本:
huggingface.co/docs/transformers/v4.37.2/en/model_doc/nystromformer
概述
Nyströmformer 模型由 Yunyang Xiong、Zhanpeng Zeng、Rudrasis Chakraborty、Mingxing Tan、Glenn Fung、Yin Li 和 Vikas Singh 在Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention中提出。
论文摘要如下:
Transformer 已经成为自然语言处理任务的强大工具。驱动 Transformer 出色性能的关键组件是自注意力机制,它编码了其他标记对每个特定标记的影响或依赖。尽管有益,但自注意力对输入序列长度的二次复杂度限制了其在更长序列上的应用——这是社区正在积极研究的一个主题。为了解决这一限制,我们提出了 Nyströmformer——一个模型,随着序列长度的增加,展现出有利的可扩展性。我们的想法是基于将 Nyström 方法调整为用 O(n)复杂度近似标准自注意力。Nyströmformer 的可扩展性使其能够应用于包含数千个标记的更长序列。我们在 GLUE 基准和 IMDB 评论的多个下游任务上进行评估,使用标准序列长度,发现我们的 Nyströmformer 表现相当,甚至在少数情况下,甚至略优于标准自注意力。在 Long Range Arena(LRA)基准上的更长序列任务中,Nyströmformer 相对于其他高效自注意力方法表现良好。我们的代码可以在此 https URL 找到。
资源
- 文本分类任务指南
- 标记分类任务指南
- 问答任务指南
- 遮蔽语言建模任务指南
- 多选任务指南
NystromformerConfig
class transformers.NystromformerConfig
( vocab_size = 30000 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 510 type_vocab_size = 2 segment_means_seq_len = 64 num_landmarks = 64 conv_kernel_size = 65 inv_coeff_init_option = False initializer_range = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
参数
vocab_size
(int
, 可选,默认为 30000) — Nystromformer 模型的词汇表大小。定义了在调用 NystromformerModel 时可以表示的不同标记数量。hidden_size
(int
, 可选,默认为 768) — 编码器层和池化层的维度。num_hidden_layers
(int
, 可选,默认为 12) — Transformer 编码器中的隐藏层数。num_attention_heads
(int
, 可选,默认为 12) — Transformer 编码器中每个注意力层的注意力头数。intermediate_size
(int
, 可选,默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。hidden_act
(str
或function
, 可选,默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。hidden_dropout_prob
(float
, 可选,默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。attention_probs_dropout_prob
(float
, 可选,默认为 0.1) — 注意力概率的丢弃比率。max_position_embeddings
(int
, 可选,默认为 512) — 该模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。type_vocab_size
(int
, optional, defaults to 2) — 在调用 NystromformerModel 时传递的token_type_ids
的词汇表大小。segment_means_seq_len
(int
, optional, defaults to 64) — 在段均值中使用的序列长度。num_landmarks
(int
, optional, defaults to 64) — 在 Nystrom 近似中使用的地标(或 Nystrom)点的数量。conv_kernel_size
(int
, optional, defaults to 65) — Nystrom 近似中使用的深度卷积的核大小。inv_coeff_init_option
(bool
, optional, defaults toFalse
) — 是否使用精确系数计算来计算矩阵的 Moore-Penrose 逆的初始值的迭代方法。initializer_range
(float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。layer_norm_eps
(float
, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。
这是一个配置类,用于存储 NystromformerModel 的配置。根据指定的参数实例化一个 Nystromformer 模型,定义模型架构。使用默认值实例化配置将产生类似于 Nystromformer uw-madison/nystromformer-512 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例:
>>> from transformers import NystromformerModel, NystromformerConfig >>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration >>> configuration = NystromformerConfig() >>> # Initializing a model from the uw-madison/nystromformer-512 style configuration >>> model = NystromformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
NystromformerModel
class transformers.NystromformerModel
( config )
参数
config
(NystromformerConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 Nyströmformer 模型变压器输出原始隐藏状态,没有特定的头部。这个模型是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列令牌的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 遮盖填充令牌索引上的注意力。选择的掩码值在[0, 1]
之间:
- 对于未被
masked
的令牌为 1, - 对于被
masked
的令牌为 0。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
内:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
内:
- 1 表示头部是
未被掩盖
, - 0 表示头部是
被掩盖
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(NystromformerConfig)和输入的不同元素。
last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。
如果使用past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True
还有交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。
每层模型的输出处的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
NystromformerModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, NystromformerModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") >>> model = NystromformerModel.from_pretrained("uw-madison/nystromformer-512") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
NystromformerForMaskedLM
class transformers.NystromformerForMaskedLM
( config )
参数
config
(NystromformerConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
带有顶部语言建模
头的 Nyströmformer 模型。此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 对于“未屏蔽”的标记,
- 对于“屏蔽”的标记为 0。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部
未被掩盖
, - 0 表示头部
被掩盖
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这很有用。output_attentions
(bool
,optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩盖),损失仅计算具有标签在[0, ..., config.vocab_size]
内的标记。
返回
transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(NystromformerConfig)和输入的不同元素。
loss
(torch.FloatTensor
,形状为(1,)
,optional,当提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)。
模型在每一层输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每一层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
NystromformerForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, NystromformerForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") >>> model = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels)
NystromformerForSequenceClassification
class transformers.NystromformerForSequenceClassification
( config )
参数
config
(NystromformerConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
Nyströmformer 模型变压器,顶部带有序列分类/回归头(池化输出的线性层),例如 GLUE 任务。
这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)- 避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)- 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部是
not masked
, - 0 表示头部是
masked
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size,)
的torch.LongTensor
,可选)- 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(NystromformerConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,在提供labels
时返回)- 分类(如果config.num_labels==1
则为回归)损失。logits
(形状为(batch_size, config.num_labels)
的torch.FloatTensor
)- 分类(如果config.num_labels==1
则为回归)得分(在 SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个+每层输出的一个)。
模型在每一层输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,在传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
NystromformerForSequenceClassification 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, NystromformerForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") >>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, NystromformerForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") >>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = NystromformerForSequenceClassification.from_pretrained( ... "uw-madison/nystromformer-512", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.sum( ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 ... ).to(torch.float) >>> loss = model(**inputs, labels=labels).loss
Transformers 4.37 中文文档(四十九)(4)https://developer.aliyun.com/article/1565043