MRA
原始文本:
huggingface.co/docs/transformers/v4.37.2/en/model_doc/mra
概述
MRA 模型由 Zhanpeng Zeng、Sourav Pal、Jeffery Kline、Glenn M Fung 和 Vikas Singh 在Multi Resolution Analysis (MRA) for Approximate Self-Attention中提出。
论文摘要如下:
Transformer 已成为自然语言处理和视觉中许多任务的首选模型。最近关于更有效地训练和部署 Transformer 的努力已经确定了许多近似自注意力矩阵的策略,这是 Transformer 架构中的关键模块。有效的想法包括各种预定义的稀疏模式、低秩基扩展以及它们的组合。在本文中,我们重新审视了经典的多分辨率分析(MRA)概念,如小波,其在这种设置中的潜在价值迄今为止尚未得到充分探索。我们展示了基于经验反馈和现代硬件以及实现挑战所指导的设计选择的简单近似,最终产生了一个基于 MRA 的自注意力方法,其在大多数感兴趣的标准上具有出色的性能。我们进行了大量实验,并证明这种多分辨率方案优于大多数高效的自注意力提议,并且对于短序列和长序列都是有利的。代码可在github.com/mlpen/mra-attention
找到。
MraConfig
class transformers.MraConfig
( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 1 initializer_range = 0.02 layer_norm_eps = 1e-05 position_embedding_type = 'absolute' block_per_row = 4 approx_mode = 'full' initial_prior_first_n_blocks = 0 initial_prior_diagonal_n_blocks = 0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
参数
vocab_size
(int
, 可选, 默认为 50265) — Mra 模型的词汇表大小。定义了在调用 MraModel 时可以表示的不同标记的数量。hidden_size
(int
, 可选, 默认为 768) — 编码器层和池化层的维度。num_hidden_layers
(int
, 可选, 默认为 12) — Transformer 编码器中的隐藏层数。num_attention_heads
(int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。intermediate_size
(int
, 可选, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。hidden_act
(str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。hidden_dropout_prob
(float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。attention_probs_dropout_prob
(float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。max_position_embeddings
(int
, 可选, 默认为 512) — 该模型可能会使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。type_vocab_size
(int
, 可选, 默认为 1) — 在调用 MraModel 时传递的token_type_ids
的词汇表大小。initializer_range
(float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。layer_norm_eps
(float
, 可选, 默认为 1e-5) — 层归一化层使用的 epsilon。position_embedding_type
(str
, optional, 默认为"absolute"
) — 位置嵌入的类型。选择"absolute"
、"relative_key"
、"relative_key_query"
之一。block_per_row
(int
, optional, 默认为 4) — 用于设置高分辨率比例的预算。approx_mode
(str
, optional, 默认为"full"
) — 控制是否同时使用低分辨率和高分辨率的近似。设置为"full"
表示同时使用低分辨率和高分辨率,设置为"sparse"
表示仅使用低分辨率。initial_prior_first_n_blocks
(int
, optional, 默认为 0) — 使用高分辨率的初始块数。initial_prior_diagonal_n_blocks
(int
, optional, 默认为 0) — 使用高分辨率的对角块数。
这是用于存储 MraModel 配置的类。它用于根据指定的参数实例化一个 MRA 模型,定义模型架构。使用默认值实例化配置将产生类似于 Mra uw-madison/mra-base-512-4 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例:
>>> from transformers import MraConfig, MraModel >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration >>> configuration = MraConfig() >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration >>> model = MraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
MraModel
class transformers.MraModel
( config )
参数
config
(MraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 MRA 模型变压器输出原始隐藏状态,没有特定的头部。这个模型是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)- 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)- 用于使自注意力模块中选择的头部失效的掩码。选择的掩码值在[0, 1]
中。
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.BaseModelOutputWithCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(MraConfig)和输入的不同元素。
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
)- 模型最后一层的隐藏状态序列输出。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
模型在每一层的输出隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
MraModel 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MraModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4") >>> model = MraModel.from_pretrained("uw-madison/mra-base-512-4") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
MraForMaskedLM
class transformers.MraForMaskedLM
( config )
参数
config
(MraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
具有顶部 语言建模
的 MRA 模型。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列令牌的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充令牌索引上执行注意力的掩码。掩码值在[0, 1]
中选择。
- 1 表示
未掩码
的令牌, - 0 表示被
掩码
的令牌。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段令牌索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于 句子 A 的令牌,
- 1 对应于 句子 B 的令牌。
- 什么是令牌类型 ID?
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部是
未掩码
, - 0 表示头部被
掩码
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的令牌将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的令牌。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或者一个torch.FloatTensor
元组(如果传递return_dict=False
或者config.return_dict=False
)包含各种元素,取决于配置(MraConfig)和输入。
loss
(torch.FloatTensor
,形状为(1,)
,可选的,当提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
, 可选的, 当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出,如果模型有一个嵌入层,+ 一个用于每一层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选的,当传递output_attentions=True
或者config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
MraForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MraForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4") >>> model = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels)
MraForSequenceClassification
class transformers.MraForSequenceClassification
( config )
参数
config
(MraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
MRA 模型变压器,顶部带有一个序列分类/回归头(一个线性层在池化输出的顶部),例如用于 GLUE 任务。这个模型是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
前向
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选的) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 对于
未被掩码
的标记为 1, - 对于
被掩码
的标记为 0。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被“掩码”,
- 0 表示头部被“掩码”。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。labels
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
时)包含各种元素,取决于配置(MraConfig)和输入。
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(如果 config.num_labels==1 则为回归)损失。logits
(torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层的输出,则为一个 + 每个层的输出)。
每层模型的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MraForSequenceClassification 的前向方法,覆盖 __call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行前处理和后处理步骤,而后者则默默地忽略它们。
单标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, MraForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4") >>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, MraForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4") >>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = MraForSequenceClassification.from_pretrained( ... "uw-madison/mra-base-512-4", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.sum( ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 ... ).to(torch.float) >>> loss = model(**inputs, labels=labels).
Transformers 4.37 中文文档(四十七)(2)https://developer.aliyun.com/article/1565186