Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

支持向量机是由间隔最大化和高维映射两大部件组成。间隔最大化是目标,支持向量机的损失函数依靠间隔计算,能让间隔达到最大的就是支持向量机要“学习”的过程。

高维映射用于解决线性不可分问题,可以理解为对数据的“预处理”。对于那些你中有我、间不容发的非线性分布数据,首先通过核函数映射至高维,映射后的数据集呈线性分布,为使用线性方法分类创造了条件。

最后归纳一下,使用支持向量机进行分类经过三个步骤:

1)选取一个合适的数学函数作为核函数。

2)使用核函数进行高维映射,数据点在映射后由原本的线性不可分变为线性可分。

3)间隔最大化,用间隔作为度量分类效果的损失函数,最终找到能够让间隔最大的超平面,分类也就最终完成了。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

数据包括两个Excel数据集:

data1(线性数据集)

x1

 

x2

 

y

标签

data2(非线性数据集)

x1

 

x2

 

y

标签

 

数据详情如下(部分展示):

image.png image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2 缺失值统计

使用Pandas工具的info()方法查看数据是否有缺失值:

image.png

从图中可以看到,数据集1没有缺失值。

3.2 描述性统计分析

使用Pandas工具的describe ()方法进行描述性统计分析:

 

image.png

从上图可以看到,每个数据项的数量、平均值、标准差、最小值、最大值、分位数。

4.特征工程

4.1 构建特征和标签

关键代码如下:

image.png

 

5.探索性数据分析

5.1 可视化特征数据集:绘制散点图

image.png

从图中可以看到,数据集1中两个特征变量的散点图分布情况。

5.2 画决策边界:散点图中制作网格

image.png

通过上图可以看到,散点图中中布满了网格小点。

 

6.构建支持向量机分类模型

主要使用SVC算法,用于构建决策边界。

6.1 建模,计算决策边界并找出网格上每个点到决策边界的距离

 

模型名称

参数值

SVM分类模型

kernel="linear"

 

image.png

从上图可以看到,从上图可以看到三条等高线,这三条等高线是分别基于Z的值为-1、0、1绘制的。

关键代码:

image.png

6.2 模型探索

进行模型预测、计算模型的准确率和模型中支持向量的个数:

image.png

从上图可以看到,可以看到模型的预测值、支持向量和支持向量的个数为2。

 

关键参数代码:

image.png

6.3 推广到非线性情况

数据集2特征的散点图:

image.png

从上图可以看到,是大圆里面套了一个小圆。

绘制带有决策边界的散点图:

image.png

从上图可以看出,明显,现在线性SVM已经不适合于数据集2

6.4为非线性数据增加维度并绘制3D图像

image.png

从上图可以看到,数据集2明显是线性可分的了:我们可以使用一个平面来将数据完全分开,并使平面的上方的所有数据点为一类,平面下方的所有数据点为另一类,这就是决策树模型的高维映射。

7.结论与展望

综上所述,本项目采用了SVM分类模型来绘制线性数据和非线性数据决策边界的可视化图,最终证明了支持向量机分类模型具备非线性数据的分类能力,即具有高维映射的能力


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1B1ACxL12hRJOomiTHov66g 
提取码:if2f
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
4月前
|
数据可视化 前端开发 数据挖掘
使用Folium在Python中进行地图可视化:全面指南
Folium是基于Python的交互式地图可视化库,依托Leaflet.js实现地理空间数据展示。本文从安装、基础使用到高级功能全面解析Folium:包括创建地图、添加标记、保存文件,以及绘制热力图、多边形和Choropleth地图等高级操作。通过展示北京市景点与全球地震数据的实际案例,结合性能优化、自定义样式和交互性增强技巧,帮助用户掌握Folium的核心功能与应用潜力,为数据分析提供直观支持。
231 2
|
7月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
1882 7
|
8月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
275 5
|
8月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
8月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
4月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
2月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
83 11
|
4月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
137 28

热门文章

最新文章

推荐镜像

更多