Transformers 4.37 中文文档(二十二)(5)

简介: Transformers 4.37 中文文档(二十二)

Transformers 4.37 中文文档(二十二)(4)https://developer.aliyun.com/article/1563605


FlaxBertForMaskedLM

class transformers.FlaxBertForMaskedLM

<来源>

( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的数据类型进行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的数据类型进行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

在顶部带有语言建模头的 Bert 模型。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。

最后,此模型支持 JAX 的固有功能,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 1 表示未被“掩盖”的标记,
  • 0 表示被“掩盖”的标记。
  • 注意力掩码是什么?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 令牌类型 ID 是什么?
  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]`中:
  • 1 表示头部未被“掩盖”,
  • 0 表示头部被“掩盖”。
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(BertConfig)和输入的各种元素。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出+一个用于每个层的输出)。
    每层模型的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForMaskedLM.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForNextSentencePrediction

class transformers.FlaxBertForNextSentencePrediction

<来源>

( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)—具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)—计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
    如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)—计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
    如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。

在顶部带有下一个句子预测(分类)头的 Bert 模型。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有功能,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)—词汇表中输入序列令牌的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)—用于避免在填充令牌索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于未被掩码的令牌,为 1,
  • 0 表示被掩码的令牌。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A令牌,
  • 1 对应于句子 B令牌。
  • 什么是令牌类型 ID?
  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]中选择:
  • 1 表示头部未被掩码
  • 0 表示头部被掩码
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(BertConfig)和输入的不同元素。

  • logits(形状为(batch_size, 2)jnp.ndarray)— 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性得分)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForNextSentencePrediction.from_pretrained("bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax")
>>> outputs = model(**encoding)
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

FlaxBertForSequenceClassification

class transformers.FlaxBertForSequenceClassification

< source >

( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型变压器,顶部带有一个序列分类/回归头(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。

这个模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载、保存和从 PyTorch 模型转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档,了解所有与一般用法和行为相关的事项。

最后,这个模型支持 JAX 的固有特性,比如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 避免在填充标记索引上执行注意力的蒙版。蒙版值在[0, 1]中选择:
  • 1 用于未被蒙版的标记,
  • 0 用于被蒙版的标记。
  • 注意力蒙版是什么?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于一个句子 A的标记,
  • 1 对应于一个句子 B的标记。
  • 什么是标记类型 ID?
  • position_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) – 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(BertConfig)和输入的不同元素。

  • logits (jnp.ndarray,形状为(batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例而不是此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForSequenceClassification.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForMultipleChoice

transformers.FlaxBertForMultipleChoice

<来源>

( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype可选,默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了数据类型,所有计算将使用给定的dtype执行。
    请注意,这仅指定了计算的数据类型,不会影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部带有一个多选分类头部(在汇总输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

该模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

该模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,该模型支持 JAX 的固有功能,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 表示未被masked的标记,
  • 0 表示被masked的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]之间:
  • 0 对应于一个句子 A标记,
  • 1 对应于一个句子 B标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • head_mask(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(BertConfig)和输入的各种元素。

  • logits(形状为(batch_size, num_choices)jnp.ndarray)— num_choices是输入张量的第二维。(参见上面的input_ids)。
    分类分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForMultipleChoice.from_pretrained("bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits

FlaxBertForTokenClassification

class transformers.FlaxBertForTokenClassification

< source >

( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)—模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
    如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部带有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是flax.linen.Module的子类。将其用作常规 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]之间:
  • 0 对应于句子 A的标记,
  • 1 对应于句子 B的标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部无效的掩码。掩码值选在[0, 1]之间:
  • 1 表示头部未被掩码
  • 0 表示头部被掩码
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BertConfig)和输入的不同元素。

  • logits(形状为(batch_size, sequence_length, config.num_labels)jnp.ndarray) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForTokenClassification.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForQuestionAnswering

class transformers.FlaxBertForQuestionAnswering

<来源>

( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtype (jax.numpy.dtype, optional, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部具有一个跨度分类头,用于提取式问答任务,如 SQuAD(在隐藏状态输出的顶部进行线性层计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持内置的 JAX 功能,例如:

__call__

< source >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 用于未被 masked 的标记,
  • 0 用于被 masked 的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]`中选择:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(BertConfig)和输入的不同元素。

  • start_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度起始分数(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递了output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递了output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForQuestionAnswering.from_pretrained("bert-base-uncased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。

这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的`dtype`执行。
请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtype (jax.numpy.dtype, optional, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部具有一个跨度分类头,用于提取式问答任务,如 SQuAD(在隐藏状态输出的顶部进行线性层计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持内置的 JAX 功能,例如:

__call__

< source >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 用于未被 masked 的标记,
  • 0 用于被 masked 的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]`中选择:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(BertConfig)和输入的不同元素。

  • start_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度起始分数(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递了output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递了output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForQuestionAnswering.from_pretrained("bert-base-uncased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(4)
Transformers 4.37 中文文档(二十六)
38 1
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(3)
Transformers 4.37 中文文档(二十六)
39 0
|
6月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(二十二)(4)
Transformers 4.37 中文文档(二十二)
36 3
|
6月前
|
缓存 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十二)(2)
Transformers 4.37 中文文档(二十二)
48 2
|
6月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(二十二)(1)
Transformers 4.37 中文文档(二十二)
40 1
|
6月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(二十二)(3)
Transformers 4.37 中文文档(二十二)
46 1
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十八)(2)
Transformers 4.37 中文文档(二十八)
39 2
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(5)
Transformers 4.37 中文文档(二十六)
26 1
|
6月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(二十三)(5)
Transformers 4.37 中文文档(二十三)
27 0
|
6月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(二十三)(4)
Transformers 4.37 中文文档(二十三)
24 0