一篇文章讲明白KMP算法(俗称看毛片算法)

简介: 一篇文章讲明白KMP算法(俗称看毛片算法)

今天小明就给大家粗略的讲讲KMP算法(实现复杂度O(m+n)),

KMP算法是一个字符串匹配的算法,既然来了解KMP算法,那么就已经对传统的暴力求解字符串匹配法了解啦,所以在这里小明就略过了,直接回归正题KMP算法。

了解的话这里更有帮助,下面的都是瞎扯CLICK HERE(从头到尾彻底理解KMP)

KMP算法小明略讲:

1.

  首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

  2.

  因为B与A不匹配,搜索词再往后移。

  3.

  就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

  4.

  接着比较字符串和搜索词的下一个字符,还是相同。

  5.

  直到字符串有一个字符,与搜索词对应的字符不相同为止。

  6.

  这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

  7.

  一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

  8.

  怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

  9.

  已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:(这就知道了空格前面的字符是AB,下面的字符串C前面也是AB,所以将空格与下面的字符串的C进行匹配)

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

  因为 6 - 2 等于4,所以将搜索词向后移动4位。

  10.

  因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

  11.

  因为空格与A不匹配,继续后移一位。

  12.

  逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

  13.

  逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

  14.

  下面介绍《部分匹配表》是如何产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

  15.

  "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为【A】,后缀为【B】,共有元素的长度为0;

  - "ABC"的前缀为【A, AB】,后缀为【BC, C】,共有元素的长度0;

  - "ABCD"的前缀为【A, AB, ABC】,后缀为【BCD, CD, D】,共有元素的长度为0;

  - "ABCDA"的前缀为【A, AB, ABC, ABCD】,后缀为【BCDA, CDA, DA, A】,共有元素为"A",长度为1;

  - "ABCDAB"的前缀为【A, AB, ABC, ABCD, ABCDA】,后缀为【BCDAB, CDAB, DAB, AB, B】,共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为【A, AB, ABC, ABCD, ABCDA, ABCDAB】,后缀为【BCDABD, CDABD, DABD, ABD, BD, D】,共有元素的长度为0。

  16.

  "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

求next数组(重点):

1 void Get_next(string b,int next){

2 int len=b.length();

3 int i=0,j=-1;

4 next【0】=-1;

5 while(i[span style="color: rgba(0, 0, 0, 1)">len){

6 if(j==-1||b【i】==b【j】){

7 next【++i】=++j;

8 }

9 else{

10 j=next【j】;

11 }

12 }

13 }

KMP函数:

1 int KMP(string a,string b,int next){

2 Get_next(b,next);

3 int alen=a.length(),blen=b.length();

4 int i=0,j=-1;

5 while(iblen){

6 if(j==-1||a【i】==b【j】){

7 i++;j++;

8 }//代码效果参考:http://www.ezhiqi.com/zx/art_2100.html

9 else{

10 j=next【j】;

11 }

12 if(j==blen)return i-j;

13 }

14 return -1;

15 }

明楼

相关文章
|
2月前
|
算法
第四章 KMP算法理论基础
第四章 KMP算法理论基础
21 0
|
2月前
|
算法
KMP算法
KMP算法
35 0
|
4月前
|
算法 C++
A : DS串应用–KMP算法
这篇文章提供了KMP算法的C++实现,包括计算模式串的next数组和在主串中查找模式串位置的函数,用于演示KMP算法的基本应用。
|
5月前
|
数据采集 算法 JavaScript
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
JavaScript字符串搜索涵盖`indexOf`、`includes`及KMP算法。`indexOf`返回子字符串位置,`includes`检查是否包含子字符串。KMP是高效的搜索算法,尤其适合长模式匹配。示例展示了如何在数据采集(如网页爬虫)中使用这些方法,结合代理IP进行安全搜索。代码示例中,搜索百度新闻结果并检测是否含有特定字符串。学习这些技术能提升编程效率和性能。
135 1
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
|
4月前
|
算法
KMP算法
KMP算法
33 0
|
5月前
|
算法 搜索推荐
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
|
5月前
|
算法 Java
KMP算法详解及其在字符串匹配中的应用
KMP算法详解及其在字符串匹配中的应用
|
12天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
18天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
6天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。