推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流

简介: 推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流

头条的介绍

两个推荐,一个是首页频道推荐,一个是文章相似结果推荐

他的架构

离线我们一般都属于批量计算

首先我们要做的是

基础数据层介绍

推荐架构和业务流


相关文章
|
20天前
|
搜索推荐 NoSQL Java
微服务架构设计与实践:用Spring Cloud实现抖音的推荐系统
本文基于Spring Cloud实现了一个简化的抖音推荐系统,涵盖用户行为管理、视频资源管理、个性化推荐和实时数据处理四大核心功能。通过Eureka进行服务注册与发现,使用Feign实现服务间调用,并借助Redis缓存用户画像,Kafka传递用户行为数据。文章详细介绍了项目搭建、服务创建及配置过程,包括用户服务、视频服务、推荐服务和数据处理服务的开发步骤。最后,通过业务测试验证了系统的功能,并引入Resilience4j实现服务降级,确保系统在部分服务故障时仍能正常运行。此示例旨在帮助读者理解微服务架构的设计思路与实践方法。
69 16
|
6月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的民宿推荐系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的民宿推荐系统附带文章源码部署视频讲解等
60 1
|
4月前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
107 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
2月前
|
数据管理 Nacos 开发者
"Nacos架构深度解析:一篇文章带你掌握业务层四大核心功能,服务注册、配置管理、元数据与健康检查一网打尽!"
【10月更文挑战第23天】Nacos 是一个用于服务注册发现和配置管理的平台,支持动态服务发现、配置管理、元数据管理和健康检查。其业务层包括服务注册与发现、配置管理、元数据管理和健康检查四大核心功能。通过示例代码展示了如何在业务层中使用Nacos,帮助开发者构建高可用、动态扩展的微服务生态系统。
151 0
|
6月前
|
搜索推荐 人工智能
人工智能LLM问题之推荐系统的架构流程图如何解决
人工智能LLM问题之推荐系统的架构流程图如何解决
人工智能LLM问题之推荐系统的架构流程图如何解决
|
6月前
|
人工智能 算法 大数据
算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环
这篇内容介绍了编程中避免使用 for 循环的一些方法,特别是针对 Python 语言。它强调了 for 循环在处理大数据或复杂逻辑时可能导致的性能、可读性和复杂度问题。
65 6
算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环
|
5月前
|
消息中间件 搜索推荐 UED
Elasticsearch 作为推荐系统后端的技术架构设计
【8月更文第28天】在现代互联网应用中,推荐系统已经成为提高用户体验和增加用户粘性的重要手段之一。Elasticsearch 作为一个高性能的搜索和分析引擎,不仅能够提供快速的全文检索能力,还可以通过其强大的数据处理和聚合功能来支持推荐系统的实现。本文将探讨如何利用 Elasticsearch 构建一个高效且可扩展的推荐系统后端架构,并提供一些具体的代码示例。
420 0
|
6月前
|
搜索推荐 算法 大数据
基于内容的推荐系统算法详解
【7月更文挑战第14天】基于内容的推荐系统算法作为推荐系统发展的初期阶段的重要技术之一,具有其独特的优势和广泛的应用场景。然而,随着大数据和人工智能技术的发展,传统的基于内容的推荐系统已经难以满足日益复杂和多样化的推荐需求。因此,未来的推荐系统研究将更加注重多种推荐算法的融合与创新,以提供更加精准、个性化的推荐服务。
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现RVM相关向量机回归模型(RVR算法)项目实战
Python实现RVM相关向量机回归模型(RVR算法)项目实战
|
6月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的周边美食推荐系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的周边美食推荐系统附带文章源码部署视频讲解等
42 1

热门文章

最新文章