优化基于阿里云的微服务架构下的数据库访问性能

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 在应对大型电商项目中数据库访问性能瓶颈问题时,团队通过阿里云工具分析发现高QPS、慢查询和不合理数据交互是关键。优化措施包括:1) 索引优化,针对慢查询添加或调整索引;2) 开启读写分离,使用RDS读写分离功能和DRDS进行水平拆分;3) 引入Redis缓存热点数据,减少直接数据库访问;4) 服务化数据访问,降低跨服务数据库调用;5) 使用Sentinel进行限流和熔断,保护数据库资源。这些改进显著提升了系统响应速度和用户体验。

优化基于阿里云的微服务架构下的数据库访问性能

背景介绍

在我负责的一个大型电商项目中,随着用户量的激增,我们遇到了一个棘手的问题:微服务架构下,数据库访问性能瓶颈日益凸显,尤其是在大促期间,高并发请求导致数据库连接池频繁耗尽,严重影响了系统的响应速度和用户体验。面对这一挑战,我们决定采取一系列措施来优化数据库访问性能,确保系统稳定运行。

问题分析

首先,我们通过监控工具(如阿里云ARMS)发现,在高峰时段,数据库的QPS(每秒查询次数)远超预期设计值,且存在大量慢查询,这直接导致了数据库连接的长时间占用。此外,部分服务之间的数据交互设计不合理,增加了数据库的负担。因此,我们的优化策略主要围绕减少数据库访问压力、提升查询效率以及优化资源管理几个方面展开。

解决思路与具体方案

1. 数据库层面优化

1.1 索引优化

通过对慢查询日志的分析,识别出高频且耗时的SQL语句,针对性地添加或调整索引,以减少全表扫描的情况。使用阿里云DMS的数据优化建议功能辅助进行索引优化。

  1. 慢查询日志分析
    使用阿里云DMS(Data Management Service)登录到RDS实例,查看并下载慢查询日志。在DMS控制台,您可以直接查看SQL执行性能分析,它会标出执行较慢的SQL语句及其执行时间。

  2. 识别优化点
    通过分析慢查询日志,找到执行时间长且频率较高的SQL语句。例如,假设有一条频繁执行的查询语句是“SELECT * FROM products WHERE category_id = ? AND created_at > ?”。

  3. 索引创建
    分析该SQL,考虑是否可以通过增加索引来减少查询时间。在这个例子中,可以为category_idcreated_at字段创建联合索引。在MySQL中,创建索引的SQL命令如下:

    ALTER TABLE products ADD INDEX idx_category_created (category_id, created_at);
    
  4. 使用DMS数据优化建议
    DMS提供数据优化建议功能,可以帮助分析表结构并提出索引优化建议。登录DMS后,选择对应数据库和表,点击“优化建议”,根据提示操作即可。

1.2 读写分离:

利用阿里云RDS的读写分离功能,将读操作分散到只读实例上,减轻主数据库的压力。同时,通过DRDS(分布式关系型数据库服务)进一步水平拆分,实现数据的分布式存储与访问。

  1. 启用RDS读写分离
    在阿里云RDS控制台,选择目标实例,进入“数据库代理”或“读写分离”配置页面,按照指引开启读写分离功能,并配置至少一个只读实例。配置完成后,应用程序需要配置两组数据库连接信息,一组用于写操作,一组用于读操作。

  2. 代码示例(Java Spring框架中使用MyBatis Plus):

    在Spring配置文件中,定义两个数据源,分别对应主库和只读副本:

    <bean id="writeDataSource" class="com.alibaba.druid.pool.DruidDataSource">
        <!-- 主库配置 -->
    </bean>
    
    <bean id="readDataSource" class="com.alibaba.druid.pool.DruidDataSource">
        <!-- 只读副本配置 -->
    </bean>
    
    <bean id="dynamicDataSource" class="com.baomidou.mybatisplus.extension.spring.MybatisDynamicDataSource">
        <property name="targetDataSources">
            <map key-type="java.lang.String">
                <entry key="write" value-ref="writeDataSource"/>
                <entry key="read" value-ref="readDataSource"/>
            </map>
        </property>
        <property name="defaultTargetDataSource" ref="writeDataSource"/>
    </bean>
    

    在MyBatis Plus的Mapper接口中,通过@DS注解指定数据源:

    @Mapper
    public interface ProductMapper {
         
    
        @Select("SELECT * FROM products WHERE id = #{id}")
        @DS("read") // 指定使用读数据源
        Product findById(@Param("id") Long id);
    
        // 写操作不加注解,默认使用主数据源
        @Insert("INSERT INTO products(name, price) VALUES(#{name}, #{price})")
        int insert(Product product);
    }
    

1.3 缓存策略:

采用Redis作为缓存层,将热点数据和频繁查询的结果预先存储起来,减少直接对数据库的访问。利用阿里云Redis版的高可用特性,保障数据的一致性和可靠性。

具体实践:集成Redis缓存

环境准备

  • 技术栈:Java, Spring Boot, Spring Data Redis, Jedis (Redis客户端)
  • 阿里云服务:阿里云Redis版

实践步骤

1. 添加依赖

pom.xml中加入Spring Data Redis和Jedis的依赖:

<dependencies>
    <!-- Spring Data Redis -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>
    <!-- Jedis客户端 -->
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
    </dependency>
</dependencies>
2. 配置Redis连接

application.properties中配置Redis服务器地址和密码(请替换为您的实际阿里云Redis实例信息):

spring.redis.host=your-redis-host
spring.redis.port=your-redis-port
spring.redis.password=your-redis-password
3. 创建RedisTemplate Bean

为了方便操作Redis,我们通常会定义一个RedisTemplate Bean:

@Configuration
public class RedisConfig {
   

    @Bean
    public RedisConnectionFactory redisConnectionFactory() {
   
        JedisConnectionFactory factory = new JedisConnectionFactory();
        factory.setHostName("your-redis-host");
        factory.setPort(your-redis-port);
        factory.setPassword(RedisPassword.of("your-redis-password"));
        return factory;
    }

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
   
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(factory);
        // 设置序列化器
        Jackson2JsonRedisSerializer<Object> serializer = new Jackson2JsonRedisSerializer<>(Object.class);
        ObjectMapper objectMapper = new ObjectMapper();
        objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        objectMapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        serializer.setObjectMapper(objectMapper);
        template.setValueSerializer(serializer);
        template.setKeySerializer(new StringRedisSerializer());
        template.afterPropertiesSet();
        return template;
    }
}
4. 缓存数据示例

假设我们有一个商品服务,需要频繁获取商品详情,我们可以将商品信息缓存到Redis中:

@Service
public class ProductService {
   

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    public Product getProductDetails(String productId) {
   
        // 尝试从Redis中获取商品信息
        String key = "product:" + productId;
        Product product = (Product) redisTemplate.opsForValue().get(key);
        if (product == null) {
   
            // 如果Redis中没有,则从数据库中获取并放入Redis
            product = getProductFromDatabase(productId);
            redisTemplate.opsForValue().set(key, product, 30, TimeUnit.MINUTES); // 缓存有效期30分钟
        }
        return product;
    }

    // 假设这个方法是从数据库获取商品信息
    private Product getProductFromDatabase(String productId) {
   
        // 实现逻辑略...
    }
}

2. 微服务架构优化

2.1 服务化数据访问

重构服务间的数据交互逻辑,尽量减少跨服务的直接数据库调用,通过API接口调用方式传递数据,提高数据访问的解耦度。

2.2 限流与熔断机制

引入Sentinel作为流量控制组件,对数据库访问进行限流,避免因某服务异常导致的数据库连接池耗尽。同时,配置熔断策略,当数据库访问失败率过高时自动降级处理,保护数据库资源。

  1. 引入Sentinel依赖
    在微服务项目中添加Sentinel的依赖项。

    <dependency>
        <groupId>com.alibaba.cloud</groupId>
        <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    </dependency>
    
  2. 配置限流规则
    在项目的配置文件中添加Sentinel限流规则,例如限制数据库访问的QPS不超过100。

    spring:
      cloud:
        sentinel:
          transport:
            dashboard: localhost:8080 # Sentinel控制台地址
          rules:
            - resource: db-access # 定义资源名为db-access
              limitApp: default # 应用默认
              grade: 1 # 流控模式,1表示QPS模式
              count: 100 # QPS阈值
    
  3. 熔断策略配置
    使用Sentinel的降级规则来实现熔断。在配置文件中添加熔断规则,当数据库访问错误率达到50%时触发熔断。

    spring:
      cloud:
        sentinel:
          rules:
            - resource: db-access
              controlBehavior: 0 # 流控方式,默认
              circuitBreaker:
                enabled: true # 开启熔断
                strategy: 0 # 熔断策略,默认为慢调用比例
                slowRatioThreshold: 0.5 # 慢调用比例阈值,当达到50%时触发熔断
    
  4. 代码中应用Sentinel
    在数据库访问层或服务调用层应用Sentinel的API来保护资源。

    @Service
    public class DbService {
         
    
        @Resource
        private DataSource dataSource;
    
        public List<User> getUsersByCondition(UserQueryCondition condition) {
         
            Entry entry = null;
            try {
         
                entry = SphU.entry("db-access"); // 定义资源入口
                // 执行数据库查询逻辑
                List<User> users = jdbcTemplate.query(...);
                return users;
            } catch (BlockException e) {
          // 限流或熔断时捕获异常
                log.error("访问数据库资源被限流或熔断", e);
                throw new ServiceException("数据库访问繁忙,请稍后再试");
            } finally {
         
                if (entry != null) {
         
                    entry.exit(); // 退出资源入口
                }
            }
        }
    }
    

最后

通过上述一系列的优化措施,我们成功地提升了微服务架构下数据库访问的性能,大促期间的服务稳定性得到了显著增强,用户反馈的页面加载速度和操作响应时间均有明显改善。本次实践的关键点在于综合运用了数据库优化技术、微服务架构优化策略以及云平台的弹性能力。未来,我们将持续关注系统性能,不断探索更高效的数据处理和访问模式,同时加强自动化运维能力,以应对更加复杂多变的业务场景。这次经验也让我们深刻认识到,在云原生时代,合理利用云服务提供商的强大功能对于提升系统整体性能至关重要。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
相关文章
|
5月前
|
存储 弹性计算 运维
AI时代下阿里云基础设施的稳定性架构揭秘
计算、存储、网络作为云计算基础 IaaS 服务,一直是阿里云的核心产品,承载着百万客户的 IT 基础设施。曾经我们认为应用高可用、服务分布式可以满足客户对 IaaS 所有的稳定性诉求。
666 2
AI时代下阿里云基础设施的稳定性架构揭秘
|
4月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
175 3
|
4月前
|
人工智能 Cloud Native 安全
解读阿里云刚发布的《AI 原生应用架构白皮书》
阿里云在云栖大会重磅发布了《AI 原生应用架构白皮书》,该白皮书覆盖 AI 原生应用的 11 大关键要素,获得业界 15 位专家联名推荐,来自 40 多位一线工程师实践心得,全书合计超 20w 字,分为 11 章,全面、系统地解构 AI 原生应用架构,包含了 AI 原生应用的 11 大关键要素,模型、框架、提示词、RAG、记忆、工具、网关、运行时、可观测、评估和安全。本文整理自阿里云智能技术专家李艳林在云栖大会现场的解读。
2068 54
|
4月前
|
人工智能 缓存 安全
阿里云发布《AI 原生应用架构白皮书》
阿里云联合阿里巴巴爱橙科技,共同发布《AI 原生应用架构白皮书》,围绕 AI 原生应用的 DevOps 全生命周期,从架构设计、技术选型、工程实践到运维优化,对概念和重难点进行系统的拆解,并尝试提供一些解题思路。白皮书覆盖 AI 原生应用的 11 大关键要素,获得 15 位业界专家联名推荐,来自 40 多位一线工程师实践心的,全书合计超 20w 字,分为 11 章。
2534 33
|
3月前
|
人工智能 缓存 安全
阿里云发布《AI 原生应用架构白皮书》!
阿里云联合爱橙科技发布《AI原生应用架构白皮书》,系统解析AI应用在架构设计、开发运维中的关键挑战与解决方案,涵盖大模型、Agent、RAG、安全等11大核心要素,助力企业构建稳定、高效、可控的AI应用体系。
阿里云发布《AI 原生应用架构白皮书》!
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
260 6
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
177 1
|
4月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
369 1