拿来及用的Python词云图代码 | wordcloud生成词云详解

简介: 词云也叫文字云,是一种可视化的结果呈现,常用在爬虫数据分析中,原理就是统计文本中高频出现的词,过滤掉某些干扰词,将结果生成一张图片,直观的获取数据的重点信息。今天,我们就来学习一下Python生成词云的常用库wordcloud。

词云也叫文字云,是一种可视化的结果呈现,常用在爬虫数据分析中,原理就是统计文本中高频出现的词,过滤掉某些干扰词,将结果生成一张图片,直观的获取数据的重点信息。今天,我们就来学习一下Python生成词云的常用库wordcloud


安装pip install wordcloud


github项目:github.com/amueller/wo…


wordcloud对象有很多参数设定,可以绘制不同形状、颜色和尺寸的词云图。

WordCloud对象常用参数

参数 说明
font_path 设置字体,指定字体文件的路径
width 生成图片宽度,默认400像素
height 生成图片高度,默认200像素
mask 词云形状,默认使用矩形
min_font_size 词云中最小的字体字号,默认4号
font_step 字号步进间隔,默认1
max_font_size 词云中最大的字体字号,默认根据高度自动调节
max_words 词云显示的最大词数,默认200
stopwords 设置停用词(需要屏蔽的词),停用词不在词云中显示,默认使用内置的STOPWORDS
background_color 图片背景颜色,默认黑色

WordCloud常用方法

方法 功能
generate(text) 加载词云文本
to_file(filename) 输出词云文件

wordcloud默认是为了英文文本来做词云的,如果需要制作中文文本词云,就需要先对中文进行分词。这里就需要用到中文分词库jieba

jieba

jieba是优秀的中文分词库,需要安装。它的原理是利用一个中文词库,确定中文字符之间的关联概率,汉字间概率大的组成词组,形成分词结果,除了分词,还可以添加自定义词组。


安装:pip install jieba


jieba有三种分词模式,这里我们只学习它的精确模式,把文本精确的切分开,不存在冗余单词。


使用jieba.lcut(s),返回列表型分词结果。当然,也可以使用jieba.add_word(w)向jieba库中增加词语。

词云案例

爬取最近很火的一部电影《你好,李焕英 》的影评数据,生成词云。


获取10页短评数据,保存到文本中。

import requests
from bs4 import BeautifulSoup
import time
import random
urls=['https://movie.douban.com/subject/34841067/comments?start={}&limit=20&status=P&sort=new_score'.format(str(i)) for i in range(0, 200, 20)] #通过观察的url翻页的规律,使用for循环得到10个链接,保存到urls列表中
print(urls)
dic_h = {
    "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36"}
comments_list = [] #初始化用于保存短评的列表

for url in urls: #使用for循环分别获取每个页面的数据,保存到comments_list列表
    r = requests.get(url=url,headers = dic_h).text

    soup = BeautifulSoup(r, 'lxml')
    ul = soup.find('div',id="comments")
    lis= ul.find_all('p')

    list2 =[]
    for li in lis:
        list2.append(li.find('span').string)
    # print(list2)
    comments_list.extend(list2)
    time.sleep(random.randint(0,3)) # 暂停0~3秒
    
with open('lhy_comments.txt', 'w', encoding='utf-8') as f: #使用with open()新建对象f
    # 将列表中的数据循环写入到文本文件中
    for i in comments_list:
        f.write(i+"\n") #写入数据

使用wordcloud生成词云的步骤

1.读取文件,分词整理

2.配置对象参数,加载词云文本

3.计算词频,输出词云文件

基本的词云

import jieba
import wordcloud
# 读取文本
with open("lhy_comments.txt",encoding="utf-8") as f:
    s = f.read()
print(s)
ls = jieba.lcut(s) # 生成分词列表
text = ' '.join(ls) # 连接成字符串


stopwords = ["的","是","了"] # 去掉不需要显示的词

wc = wordcloud.WordCloud(font_path="msyh.ttc",
                         width = 1000,
                         height = 700,
                         background_color='white',
                         max_words=100,stopwords=s)
# msyh.ttc电脑本地字体,写可以写成绝对路径
wc.generate(text) # 加载词云文本
wc.to_file("李焕英1.png") # 保存词云文件

词云效果如下:

1719229975101.jpg

添加蒙版图片的词云

可以将有白色背景的图片作为蒙版图片,有图案的地方会被词云填充。


添加蒙版图片需要使用PIL,numpy库。


添加蒙版图片如下:

1719229994552.jpg

# 示例代码
from wordcloud import WordCloud
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import jieba

# 打开文本
with open("lhy_comments.txt",encoding="utf-8") as f:
    s = f.read()

# 中文分词
text = ' '.join(jieba.cut(s))

# 生成对象
img = Image.open("mask_pic.png") # 打开遮罩图片
mask = np.array(img) #将图片转换为数组

stopwords = ["我","你","她","的","是","了","在","也","和","就","都","这"]
wc = WordCloud(font_path="msyh.ttc",
               mask=mask,
               width = 1000,
               height = 700,
               background_color='white',
               max_words=200,
               stopwords=stopwords).generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')# 用plt显示图片
plt.axis("off")  # 不显示坐标轴
plt.show() # 显示图片

# 保存到文件
wc.to_file("李焕英2.png")

词云效果如下:

1719230050062.jpg

相关文章
|
3月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
651 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
3月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
9天前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
200行python代码实现从Bigram模型到LLM
|
9天前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
从零开始200行python代码实现LLM
|
1月前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
把Postman调试脚本秒变Python采集代码的三大技巧
|
18天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
53 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
20天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
192 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
2月前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
193 0
|
4月前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
4月前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。

热门文章

最新文章

推荐镜像

更多