广度优先搜索(Breadth-First Search,BFS)是一种用于图的遍历或搜索的算法。

简介: 广度优先搜索(Breadth-First Search,BFS)是一种用于图的遍历或搜索的算法。

与深度优先搜索不同,BFS 从起始顶点开始,沿着图的宽度遍历图的节点,直到找到目标节点或遍历完整个图。BFS 通常使用队列来实现,它遵循以下步骤:

 

1. 将起始顶点放入队列中,并标记为已访问。

2. 从队列中取出一个顶点作为当前顶点。

3. 对于当前顶点的每个未访问的邻居顶点,将其标记为已访问并放入队列中。

4. 重复步骤 2 和步骤 3,直到队列为空。

 

BFS 的特点包括:

 

- 广度优先:按照层级顺序逐层遍历图的节点,先访问离起始顶点最近的节点。

- 最短路径:如果图中的边具有相同的权重,则从起始顶点到任意顶点的路径都是最短路径。

- 非递归性质:BFS 使用队列来存储待访问的节点,因此是一个非递归的算法。

 

BFS 在许多领域都有广泛的应用,包括图论、网络路由算法、最短路径算法等。

 

以下是 C、C++、Java、Python 四种语言下实现广度优先搜索的示例代码:

 

### C 语言

 

```c
#include <stdio.h>
#include <stdlib.h>
 
#define MAX_VERTICES 100
 
typedef struct {
    int data[MAX_VERTICES];
    int front, rear;
} Queue;
 
void init(Queue *q) {
    q->front = 0;
    q->rear = -1;
}
 
void enqueue(Queue *q, int value) {
    q->data[++(q->rear)] = value;
}
 
int dequeue(Queue *q) {
    return q->data[(q->front)++];
}
 
int isEmpty(Queue *q) {
    return q->front > q->rear;
}
 
typedef struct {
    int vertices[MAX_VERTICES][MAX_VERTICES];
    int visited[MAX_VERTICES];
    int num_vertices;
} Graph;
 
void initGraph(Graph *g, int num_vertices) {
    g->num_vertices = num_vertices;
    for (int i = 0; i < num_vertices; i++) {
        g->visited[i] = 0;
        for (int j = 0; j < num_vertices; j++) {
            g->vertices[i][j] = 0;
        }
    }
}
 
void addEdge(Graph *g, int v1, int v2) {
    g->vertices[v1][v2] = 1;
    g->vertices[v2][v1] = 1;
}
 
void bfs(Graph *g, int start) {
    Queue q;
    init(&q);
    enqueue(&q, start);
    g->visited[start] = 1;
 
    while (!isEmpty(&q)) {
        int current = dequeue(&q);
        printf("%d ", current);
 
        for (int i = 0; i < g->num_vertices; i++) {
            if (g->vertices[current][i] == 1 && g->visited[i] == 0) {
                enqueue(&q, i);
                g->visited[i] = 1;
            }
        }
    }
}
 
int main() {
    Graph g;
    initGraph(&g, 6);
    addEdge(&g, 0, 1);
    addEdge(&g, 0, 2);
    addEdge(&g, 1, 3);
    addEdge(&g, 1, 4);
    addEdge(&g, 2, 5);
 
    printf("BFS traversal starting from vertex 0: ");
    bfs(&g, 0);
 
    return 0;
}
```

 

### C++ 语言

```cpp
#include <iostream>
#include <vector>
#include <queue>
 
using namespace std;
 
void bfs(vector<vector<int>>& graph, vector<bool>& visited, int start) {
    queue<int> q;
    q.push(start);
    visited[start] = true;
 
    while (!q.empty()) {
        int current = q.front();
        q.pop();
        cout << current << " ";
 
        for (int i = 0; i < graph[current].size(); i++) {
            int neighbor = graph[current][i];
            if (!visited[neighbor]) {
                q.push(neighbor);
                visited[neighbor] = true;
            }
        }
    }
}
 
int main() {
    vector<vector<int>> graph = {{1, 2}, {0, 3, 4}, {0, 5}, {1}, {1}, {2}};
    vector<bool> visited(graph.size(), false);
 
    cout << "BFS traversal starting from vertex 0: ";
    bfs(graph, visited, 0);
 
    return 0;
}
```

 

### Java 语言

```java
import java.util.LinkedList;
import java.util.Queue;
 
class Graph {
    private int numVertices;
    private int[][] vertices;
    private boolean[] visited;
 
    public Graph(int numVertices) {
        this.numVertices = numVertices;
        vertices = new int[numVertices][numVertices];
        visited = new boolean[numVertices];
    }
 
    public void addEdge(int v1, int v2) {
        vertices[v1][v2] = 1;
        vertices[v2][v1] = 1;
    }
 
    public void bfs(int start) {
        Queue<Integer> queue = new LinkedList<>();
        queue.add(start);
        visited[start] = true;
 
        while (!queue.isEmpty()) {
            int current = queue.poll();
            System.out.print(current + " ");
 
            for (int i = 0; i < numVertices; i++) {
                if (vertices[current][i] == 1 && !visited[i]) {
                    queue.add(i);
                    visited[i] = true;
                }
            }
        }
    }
 
    public static void main(String[] args) {
        Graph graph = new Graph(6);
        graph.addEdge(0, 1

 

```java
import java.util.LinkedList;
import java.util.Queue;
 
class Graph {
    private int numVertices;
    private int[][] vertices;
    private boolean[] visited;
 
    public Graph(int numVertices) {
        this.numVertices = numVertices;
        vertices = new int[numVertices][numVertices];
        visited = new boolean[numVertices];
    }
 
    public void addEdge(int v1, int v2) {
        vertices[v1][v2] = 1;
        vertices[v2][v1] = 1;
    }
 
    public void bfs(int start) {
        Queue<Integer> queue = new LinkedList<>();
        queue.add(start);
        visited[start] = true;
 
        while (!queue.isEmpty()) {
            int current = queue.poll();
            System.out.print(current + " ");
 
            for (int i = 0; i < numVertices; i++) {
                if (vertices[current][i] == 1 && !visited[i]) {
                    queue.add(i);
                    visited[i] = true;
                }
            }
        }
    }
 
    public static void main(String[] args) {
        Graph graph = new Graph(6);
        graph.addEdge(0, 1);
        graph.addEdge(0, 2);
        graph.addEdge(1, 3);
        graph.addEdge(1, 4);
        graph.addEdge(2, 5);
 
        System.out.print("从顶点 0 开始的广度优先遍历:");
        graph.bfs(0);
    }
}
```

 

这段代码创建了一个包含 6 个顶点的图,并在它们之间添加了边。然后,它从顶点 0 开始执行广度优先遍历,并打印遍历顺序。

相关文章
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
219 5
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
174 0
|
2月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
179 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1030 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
3月前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
245 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
183 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
222 3
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
168 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
172 8

热门文章

最新文章