广度优先搜索(Breadth-First Search,BFS)是一种用于图的遍历或搜索的算法。

简介: 广度优先搜索(Breadth-First Search,BFS)是一种用于图的遍历或搜索的算法。

与深度优先搜索不同,BFS 从起始顶点开始,沿着图的宽度遍历图的节点,直到找到目标节点或遍历完整个图。BFS 通常使用队列来实现,它遵循以下步骤:

 

1. 将起始顶点放入队列中,并标记为已访问。

2. 从队列中取出一个顶点作为当前顶点。

3. 对于当前顶点的每个未访问的邻居顶点,将其标记为已访问并放入队列中。

4. 重复步骤 2 和步骤 3,直到队列为空。

 

BFS 的特点包括:

 

- 广度优先:按照层级顺序逐层遍历图的节点,先访问离起始顶点最近的节点。

- 最短路径:如果图中的边具有相同的权重,则从起始顶点到任意顶点的路径都是最短路径。

- 非递归性质:BFS 使用队列来存储待访问的节点,因此是一个非递归的算法。

 

BFS 在许多领域都有广泛的应用,包括图论、网络路由算法、最短路径算法等。

 

以下是 C、C++、Java、Python 四种语言下实现广度优先搜索的示例代码:

 

### C 语言

 

```c
#include <stdio.h>
#include <stdlib.h>
 
#define MAX_VERTICES 100
 
typedef struct {
    int data[MAX_VERTICES];
    int front, rear;
} Queue;
 
void init(Queue *q) {
    q->front = 0;
    q->rear = -1;
}
 
void enqueue(Queue *q, int value) {
    q->data[++(q->rear)] = value;
}
 
int dequeue(Queue *q) {
    return q->data[(q->front)++];
}
 
int isEmpty(Queue *q) {
    return q->front > q->rear;
}
 
typedef struct {
    int vertices[MAX_VERTICES][MAX_VERTICES];
    int visited[MAX_VERTICES];
    int num_vertices;
} Graph;
 
void initGraph(Graph *g, int num_vertices) {
    g->num_vertices = num_vertices;
    for (int i = 0; i < num_vertices; i++) {
        g->visited[i] = 0;
        for (int j = 0; j < num_vertices; j++) {
            g->vertices[i][j] = 0;
        }
    }
}
 
void addEdge(Graph *g, int v1, int v2) {
    g->vertices[v1][v2] = 1;
    g->vertices[v2][v1] = 1;
}
 
void bfs(Graph *g, int start) {
    Queue q;
    init(&q);
    enqueue(&q, start);
    g->visited[start] = 1;
 
    while (!isEmpty(&q)) {
        int current = dequeue(&q);
        printf("%d ", current);
 
        for (int i = 0; i < g->num_vertices; i++) {
            if (g->vertices[current][i] == 1 && g->visited[i] == 0) {
                enqueue(&q, i);
                g->visited[i] = 1;
            }
        }
    }
}
 
int main() {
    Graph g;
    initGraph(&g, 6);
    addEdge(&g, 0, 1);
    addEdge(&g, 0, 2);
    addEdge(&g, 1, 3);
    addEdge(&g, 1, 4);
    addEdge(&g, 2, 5);
 
    printf("BFS traversal starting from vertex 0: ");
    bfs(&g, 0);
 
    return 0;
}
```

 

### C++ 语言

```cpp
#include <iostream>
#include <vector>
#include <queue>
 
using namespace std;
 
void bfs(vector<vector<int>>& graph, vector<bool>& visited, int start) {
    queue<int> q;
    q.push(start);
    visited[start] = true;
 
    while (!q.empty()) {
        int current = q.front();
        q.pop();
        cout << current << " ";
 
        for (int i = 0; i < graph[current].size(); i++) {
            int neighbor = graph[current][i];
            if (!visited[neighbor]) {
                q.push(neighbor);
                visited[neighbor] = true;
            }
        }
    }
}
 
int main() {
    vector<vector<int>> graph = {{1, 2}, {0, 3, 4}, {0, 5}, {1}, {1}, {2}};
    vector<bool> visited(graph.size(), false);
 
    cout << "BFS traversal starting from vertex 0: ";
    bfs(graph, visited, 0);
 
    return 0;
}
```

 

### Java 语言

```java
import java.util.LinkedList;
import java.util.Queue;
 
class Graph {
    private int numVertices;
    private int[][] vertices;
    private boolean[] visited;
 
    public Graph(int numVertices) {
        this.numVertices = numVertices;
        vertices = new int[numVertices][numVertices];
        visited = new boolean[numVertices];
    }
 
    public void addEdge(int v1, int v2) {
        vertices[v1][v2] = 1;
        vertices[v2][v1] = 1;
    }
 
    public void bfs(int start) {
        Queue<Integer> queue = new LinkedList<>();
        queue.add(start);
        visited[start] = true;
 
        while (!queue.isEmpty()) {
            int current = queue.poll();
            System.out.print(current + " ");
 
            for (int i = 0; i < numVertices; i++) {
                if (vertices[current][i] == 1 && !visited[i]) {
                    queue.add(i);
                    visited[i] = true;
                }
            }
        }
    }
 
    public static void main(String[] args) {
        Graph graph = new Graph(6);
        graph.addEdge(0, 1

 

```java
import java.util.LinkedList;
import java.util.Queue;
 
class Graph {
    private int numVertices;
    private int[][] vertices;
    private boolean[] visited;
 
    public Graph(int numVertices) {
        this.numVertices = numVertices;
        vertices = new int[numVertices][numVertices];
        visited = new boolean[numVertices];
    }
 
    public void addEdge(int v1, int v2) {
        vertices[v1][v2] = 1;
        vertices[v2][v1] = 1;
    }
 
    public void bfs(int start) {
        Queue<Integer> queue = new LinkedList<>();
        queue.add(start);
        visited[start] = true;
 
        while (!queue.isEmpty()) {
            int current = queue.poll();
            System.out.print(current + " ");
 
            for (int i = 0; i < numVertices; i++) {
                if (vertices[current][i] == 1 && !visited[i]) {
                    queue.add(i);
                    visited[i] = true;
                }
            }
        }
    }
 
    public static void main(String[] args) {
        Graph graph = new Graph(6);
        graph.addEdge(0, 1);
        graph.addEdge(0, 2);
        graph.addEdge(1, 3);
        graph.addEdge(1, 4);
        graph.addEdge(2, 5);
 
        System.out.print("从顶点 0 开始的广度优先遍历:");
        graph.bfs(0);
    }
}
```

 

这段代码创建了一个包含 6 个顶点的图,并在它们之间添加了边。然后,它从顶点 0 开始执行广度优先遍历,并打印遍历顺序。

相关文章
|
1月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
58 5
|
1月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
38 2
|
1月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
41 0
|
1月前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
50 1
|
2月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
68 2
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
31 0
|
2月前
|
机器学习/深度学习 存储 算法
数据结构与算法——BFS(广度优先搜索)
数据结构与算法——BFS(广度优先搜索)
|
2月前
|
存储 算法 C++
【搜索算法】 跳马问题(C/C++)
【搜索算法】 跳马问题(C/C++)
下一篇
DataWorks