【数据结构与算法】:手搓顺序表(Python篇)

简介: 【数据结构与算法】:手搓顺序表(Python篇)

一、顺序表的概念

顺序表是一种线性的数据结构,其中数据元素按照特定的顺序依次存储在连续的内存空间中。它由一系列元素组成,每个元素都与唯一的索引(或者叫下标)相关联,索引从 0 开始递增。

顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。

下面这张图中,最下面那行数字0~9代表的是元素的索引,天蓝色的柱子中的数字代表的是顺序表中的元素,顺序表中的元素必须是同一数据类型的,数据类型可以是整数、浮点数、字符串等等。

image.png


二、顺序表的实现

设计顺序表类为SqList,主要包含存放元素的data列表和表示实际元素个数的size属性。因为Python属于弱类型语言,没必要专门设计像C++或则Java中的泛型类,在应用SqList时可以指定其元素为任意合法数据类型。

创建顺序表类:

# 顺序表类
class SqList:
    # 初始化
    def __init__(self):
        self.initcapacity = 5  # 初始容量设置为5
        self.capacity = self.initcapacity  # 容量设置为初始容量
        self.data = [None] * self.capacity  # 设置顺序表的空间
        self.size = 0  # 长度设为0
1. 顺序表的创建
1.1 扩容

顺序表在实现各种基本运算如插入和删除时会涉及到容量的更新,所以要设计一个方法将data列表的容量改变为newcapacity。

# 扩容
def resize(self, newcapacity):  # 改变顺序表的容量为newcapacity
    assert newcapacity >= 0
    oldata = self.data
    self.data = [None] * newcapacity
    self.capacity = newcapacity
    for i in range(self.size):
        self.data[i] = oldata[i]

这里就是先让olddata指向data,为data重新分配一个容量为newcapacity的空间,再将olddata中的所有元素复制到data中,复制中所有的元素的序号和长度size不变。原data空间会被系统自动释放掉。

1.2 整体建立顺序表

该方法就是从空顺序表开始,由含若干个元素的列表a的全部元素整体创建顺序表,即依次将a中的元素添加到data列表的末尾,当出现上溢出时按实际元素个数size的两倍扩大容量。

# 整体创建顺序表
def CreateList(self, a):  # 有数组a中的元素整体建立顺序表
    for i in range(0, len(a)):
        if self.size == self.capacity:  # 出现上溢出时
            self.resize(2 * self.size)  # 扩容
        self.data[self.size] = a[i]
        self.size += 1  # 添加后元素增加1

时间复杂度为O(n), n表示顺序表中的元素个数。


2. 顺序表的基本运算算法
2.1 顺序表的添加(尾插)

将元素e添加到顺序表的末尾:Add(e)

在data列表的尾部插入元素e,在插入中出现上溢出时按实际元素个数size的两倍扩大容量。

# 顺序表的添加(尾插)
def Add(self, e):  # 在线性表的末尾添加一个元素
    if self.size == self.capacity:
        self.resize(2 * self.size)  # 顺序表空间满时倍增容量
    self.data[self.size] = e  # 添加元素e
    self.size += 1  # 长度加1

该算法中调用一次resize()方法的时间复杂度为O(n),但n次Add操作仅需要扩大一次data空间,所以平均时间复杂度仍然为O(1)。


2.2 指定位置插入

在顺序表中插入e作为第i个元素:Insert(i,e)

在顺序表中序号i的位置上插入一个新元素e。若参数i合法(0<= i <= n),先将data[i…n-1]的每个元素均后移一个位置(从data[n - 1]元素开始移动),腾出一个空位置data[i]插入新元素e,最后将长度size增1。在插入元素时若出现上溢出,则按两倍size扩大容量。

c2b359f8bf091cb8edc87d4f528183fc_cb08920615fb59816d853bd4d6c3de85.gif

# 指定位置插入
def Insert(self, i, e):  # 在线性表中序号为i的位置插入元素
    assert 0 <= i <= self.size
    if self.size == self.capacity:  # 满时扩容
        self.resize(2 * self.size)
    for j in range(self.size, i - 1, -1):  # 疆data[i]及后面的元素后移一位
        self.data[j] = self.data[j - 1]
    self.data[i] = e  # 插入元素e
    self.size += 1  # 长度加1

该算法的时间主要花在元素的移动上,元素移动的次数不仅与表长n有关,而且与插入位置i有关。有效插入位置i的取值是0~n,共有n + 1个位置可以插入元素:


  1. 当i = 0时,移动次数为n,达到最大值。
  2. 当i = n时,移动次数为0,达到最小值。
  3. 其他情况,需要移动data[i…n - 1]的元素,移动次数为(n - 1)- i + 1 = n - i。时间复杂度为O(n)。


2.3 指定位置删除

顺序表中删除第i个数据元素:Delete(i)

该算法删除顺序表中序号i的元素。若参数i合法(0<= i < n),删除操作是将data[i + 1 … n - 1]的元素均向前移动一个位置(从data[i + 1]元素开始移动),这样覆盖了元素data[i],从而达到删除该元素的目的,最后将顺序表的长度减一。若当前容量大于初始容量并且实际长度仅为当前容量的1/4(缩容条件),则将当前容量减半。

image.gif

def Delete(self, i):  # 在线性表中删除序号为i的元素
    assert 0 <= i <= self.size - 1
    for j in range(i, self.size - 1):
        self.data[j] = self.data[j + 1]  # 将data[j]之后的元素前移一位
    self.size -= 1  # 长度减一
    if self.capacity > self.initcapacity and self.size <= self.capacity / 4:
        self.resize(self.capacity // 2)  # 满足要求容量减半

该算法的时间主要花在元素的移动上,元素移动的次数不仅与表长n有关,而且与删除位置i有关。有效删除位置i的取值是0~n - 1,共有n个位置可以插入元素:


  1. 当i = 0时,移动次数为n - 1,达到最大值。
  2. 当i = n - 1时,移动次数为0,达到最小值。
  3. 其他情况,需要移动data[i +1 … n - 1]的元素,移动次数为(n - 1)- (i + 1)+ 1 = n - i - 1。时间复杂度为O(n)。
2.4 顺序表的查找

求顺序表中第一个值为e的元素的序号:GetNo(e)

在data列表中从前向后顺序查找第一个值与e相等的元素的序号,若不存在这样的元素,则返回-1。

def GetNo(self, e):  # 查找第一个为e的元素的下标
    i = 0
    while i < self.size and self.data[i] != e:  # 查找元素e
        i += 1
    if i >= self.size:
        return -1
    else:
        return i

该算法的时间复杂度为O(n),其中n表示顺序表中的元素个数。

2.5 顺序表元素的索引访问

求顺序表中序号i的元素值:GetElem(i)

当序号i合法时(0<= i < size)返回data[i]。

def __getitem__(self, i):  # 求序号为i的元素
    assert 0 <= i < self.size
    return self.data[i]

对于顺序表对象L,可以通过L[i]调用上述运算获取序号i的元素值。时间复杂度为O(1)。

2.6 顺序表元素的修改

设置顺序表中序号i的元素值:SetElem(i,e)

def __setitem__(self, i, value):  # 设置序号为i的元素
    assert 0 <= i < self.size
    self.data[i] = value

对于顺序表对象L,可以通过L[i] = e调用上述运算将序号i的元素值设置为e。该算法的时间复杂度为O(1)


2.7 顺序表长度

求顺序表的长度:getsize()返回顺序表的长度(实际元素个数size)。

def getsize(self):  # 返回长度
    return self.size

时间复杂度为O(1)


2.8 顺序表的输出

输出顺序表的所有元素:display()依次输出顺序表中的所有元素值。

def display(self):  # 输出顺序表
    for i in range(0, self.size):
        print(self.data[i], end='

时间复杂度为O(n),n表示顺序表中的元素个数。

三、完整代码

# 顺序表类
class SqList:
    # 初始化
    def __init__(self):
        self.initcapacity = 5  # 初始容量设置为5
        self.capacity = self.initcapacity  # 容量设置为初始容量
        self.data = [None] * self.capacity  # 设置顺序表的空间
        self.size = 0  # 长度设为0

    # 扩容
    def resize(self, newcapacity):  # 改变顺序表的容量为newcapacity
        assert newcapacity >= 0
        oldata = self.data
        self.data = [None] * newcapacity
        self.capacity = newcapacity
        for i in range(self.size):
            self.data[i] = oldata[i]

    # 整体创建顺序表
    def CreateList(self, a):  # 有数组a中的元素整体建立顺序表
        for i in range(0, len(a)):
            if self.size == self.capacity:  # 出现上溢出时
                self.resize(2 * self.size)  # 扩容
            self.data[self.size] = a[i]
            self.size += 1  # 添加后元素增加1

    def Add(self, e):  # 在线性表的末尾添加一个元素
        if self.size == self.capacity:
            self.resize(2 * self.size)  # 顺序表空间满时倍增容量
        self.data[self.size] = e  # 添加元素e
        self.size += 1  # 长度加1

    def getsize(self):  # 返回长度
        return self.size

    def __getitem__(self, i):  # 求序号为i的元素
        assert 0 <= i < self.size
        return self.data[i]

    def __setitem__(self, i, value):  # 设置序号为i的元素
        assert 0 <= i < self.size
        self.data[i] = value

    def GetNo(self, e):  # 查找第一个为e的元素的下标
        i = 0
        while i < self.size and self.data[i] != e:  # 查找元素e
            i += 1
        if i >= self.size:
            return -1
        else:
            return i

    # 指定位置插入
    def Insert(self, i, e):  # 在线性表中序号为i的位置插入元素
        assert 0 <= i <= self.size
        if self.size == self.capacity:  # 满时扩容
            self.resize(2 * self.size)
        for j in range(self.size, i - 1, -1):  # 疆data[i]及后面的元素后移一位
            self.data[j] = self.data[j - 1]
        self.data[i] = e  # 插入元素e
        self.size += 1  # 长度加1

    def Delete(self, i):  # 在线性表中删除序号为i的元素
        assert 0 <= i <= self.size - 1
        for j in range(i, self.size - 1):
            self.data[j] = self.data[j + 1]  # 将data[j]之后的元素前移一位
        self.size -= 1  # 长度减一
        if self.capacity > self.initcapacity and self.size <= self.capacity / 4:
            self.resize(self.capacity // 2)  # 满足要求容量减半

    def display(self):  # 输出顺序表
        for i in range(0, self.size):
            print(self.data[i], end=' ')
        print()  # 换行

四、代码验证

if __name__ == '__main__':
    L = SqList()  # 实例化
    print('建立空顺序表L, 其容量为 %d' % (L.capacity))
    a = [1, 2, 3, 4, 5]
    print('1~6创建L')
    L.CreateList(a)
    print('L[容量 = %d, 长度 = %d]:' % (L.capacity, L.getsize()), end=' '), L.display()
    print('插入6~10')
    for i in range(6, 11):
        L.Add(i)
    print('L[容量 = %d, 长度 = %d]:' % (L.capacity, L.getsize()), end=' '), L.display()
    print('序号为2的元素 = %d' % (L[2]))
    print('设置序号为2的元素为20')
    L[2] = 20
    print('L[容量 = %d, 长度 = %d]:' % (L.capacity, L.getsize()), end=' '), L.display()
    x = 6
    print('第一个值为%d的元素序号 = %d' % (x, L.GetNo(x)))
    n = L.getsize()
    for i in range(n - 2):
        print('删除首元素')
        L.Delete(0)
        print('L[容量 = %d, 长度 = %d]:' % (L.capacity, L.getsize()), end=' '), L.display()

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
17天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
110 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
146 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
133 61
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
176 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
5天前
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】顺序表的基本运算(头歌实践教学平台习题)【合集】
本文档介绍了线性表的基本运算任务,涵盖顺序表和链表的初始化、销毁、判定是否为空、求长度、输出、查找元素、插入和删除元素等内容。通过C++代码示例详细展示了每一步骤的具体实现方法,并提供了测试说明和通关代码。 主要内容包括: - **任务描述**:实现顺序表的基本运算。 - **相关知识**:介绍线性表的基本概念及操作,如初始化、销毁、判定是否为空表等。 - **具体操作**:详述顺序表和链表的初始化、求长度、输出、查找、插入和删除元素的方法,并附有代码示例。 - **测试说明**:提供测试输入和预期输出,确保代码正确性。 - **通关代码**:给出完整的C++代码实现,帮助完成任务。 文档
20 5
|
21天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
54 20
|
14天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
19天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5