《AIGC+软件开发新范式》--03.微调工程师岗位可能并不存在, 但使用 AI 编码工具已经成为刚需(2)

简介: 在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。

本文来源于阿里云社区电子书《AIGC+软件开发新范式》


《AIGC+软件开发新范式》--03.微调工程师岗位可能并不存在, 但使用 AI 编码工具已经成为刚需(1):https://developer.aliyun.com/article/1537627


观点 4:


通过公共云平台获取算力是算力紧缺的当下值得企业认真考虑的解决方案,短期内我们可能很难摆脱“大力出奇迹”的规律。


陈鑫(神秀):在代码领域,我们观察到一个明显的趋势:具有较大参数量的模型(例如 72B)在推理能力和理解能力上,尤其是处理长上下文方面,表现得比小参数模型要好得多。


例如,当你要求模型为 1,000 行代码生成注释或单元测试时,小参数模型可能在处理前一两百行代码时还能保持正常,但随后性能会逐渐下降,甚至可能出现偷懒、忘记任务或开始出错的情况,而参数量较大的模型则能更好地处理这些问题。


我认为在一段时间内,尤其是在代码领域,我们无法摆脱“大力出奇迹”的规律。对于一些简单的任务,使用非常大的参数模型可能并不必要。例如,在通义灵码平台上,线上也并不全是使用千亿参数的模型。我们有不同参数规模的模型,如百亿参数、几十亿参数的模型,并且会根据任务的不同,将任务调度到相应的模型上。我们也在尝试形成各种专家模型的组合,并计划进行 DevOps 整个全链路的智能化改造。这有点类似于企业的流程再造,只是 DevOps 的软件生产流程与企业生产流程相似。在这个流程中,并不是所有的任务都需要使用非常大的参数模型。我们可以通过组合各种不同参数规模的模型,以及训练出的下游任务能力,来完成流程的改造。


我认为,使用多大规模的模型是需要企业去不断尝试的。但首先,我们需要解决算力问题。一旦解决了初始的算力问题,我们就可以开始逐步前进。至于后续的芯片问题,我相信最终也会得到解决。包括许多互联网大厂和国内顶尖的芯片制造企业,现在都在努力去创造一些改变。


观点 5:


微调工程师岗位可能并不存在,但微调是一项必备技能,了解业务并将其需求转化为真正的 Prompt 才是真正的价值点。


陈鑫(神秀):如果你想要进行微调,但不理解业务,那么你的价值就会非常有限。如果将微调定义为一个岗位,那么这个岗位应该具有深厚的价值,并且需要长期的积累和能力。


如果这个岗位的价值和能力很容易被替代,或者很容易学习,那么它可能就不会成为一个独立的岗位。以我们的例子来说,通义灵码本身就包含了一个非常简单的微调训练平台。这是因为我们把工程师在微调代码模型的所有经验都内置到了平台中,并且添加了一些配置。一个工程师通过一两天的培训,基本上就能掌握这些概念,开始进行微调工作。在代码领域,至少在我看来,这个门槛并没有大家想象的那么高。但在其他领域,门槛可能会更高。


对于专家知识来说,如何选择合适的数据、如何处理数据、如何解决出现的问题、如何校正训练不佳的模型、如何通过不断实验训练出符合预期的模型,以及是否清楚自己训练模型的目的,这些都是微调工程师需要考虑的问题。例如,如果你想要微调模型以理解特定的 SDK 库,并在代码补全时生成可以直接调用企业内部 SDK 或 API 的代码,那么你需要考虑如何教会模型实现这一点,构造什么样的数据,如何标注数据,以及如何筛选和处理数据。这些问题可能不是一个简单的微调工程师就能解决的。


未来,像原来的效能工程师或者中台的资深研发人员可能都需要具备微调的能力,将自己的代码资产训练到大模型中,让整个公司的人都能使用。所以,未来每个人都需要具备理解模型、处理数据和进行微调的能力,如果这成为一个必备技能,那么就不会存在一个专门称为“微调工程师”的岗位了。

观点 6:


2024 年,Agent 将率先在 B 端落地。今年下半年,我们预计将看到大量 Agent 相关的实践和落地 案例。


陈鑫(神秀):在关于 AI Agent 的话题,我认为今年它肯定会非常火热,甚至在代码领域也会受到关注。根据当前的趋势,我们可以预见这个过程将分为几个步骤。首先,大家会开始采用能够进行代码生成或续写的模型。接下来,会进行企业个性化的定制。正如我们之前讨论的微调,实际上已经涉及到了这个过程。然后,我们会进一步扩展这些模型的能力,目标是提高整个软件生产链条的效率。为了实现这一目标,我们肯定会利用 AI Agent 技术。


在没有模型的时候,我们需要训练这个“大脑”,然后通过像通义灵码这样的平台,专注于完成最核心、价值最大的任务。完成这些任务后,接下来就是构建 AI Agent。我们会搭建好平台,让各个企业基于这个平台构建自己的 AI Agent。研发领域的场景可能有上百甚至几百个,如果每个企业都进行个性化定制,那将是成千上万的需求,这显然不是一个团队能够独立完成的。


现在,各方面的技术探索已经非常成熟,我认为今年确实是 AI Agent 落地的关键一年。经过去年一年对模型和参数的优化,今年我们应该开始考虑企业个性化以及 AI Agent 的实际应用。我们已经看到,2024 年将有大量行业领先的客户开始在代码生成或代码助手领域落地。一旦他们起到了带头作用,相关的实践经验将会被大家所看到。


目前,我们在网上很少看到关于 AI Agent 实践的案例,这是因为整个行业还没有发展到那一步。预计 6 月份之后,将会有实践经验出现,下半年将会有大量 AI Agent 落地的场景和效果展示的文章,我对 AI Agent 的发展前景抱有极大的期望,这也是我们今年建设的重点。

相关文章
|
12天前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
156 0
|
5月前
|
云安全 人工智能 安全
|
3月前
|
机器学习/深度学习 人工智能 编解码
智谱AI发布新版VLM开源模型GLM-4.1V-9B-Thinking,引入思考范式,性能提升8倍
视觉语言大模型(VLM)已经成为智能系统的关键基石。
764 0
|
5月前
|
人工智能 JavaScript Devops
云效 MCP Server:AI 驱动的研发协作新范式
云效MCP Server是阿里云云效平台推出的模型上下文协议(Model Context Protocol)标准化接口系统,作为AI助手与DevOps平台的核心桥梁。通过该协议,AI大模型可无缝集成云效DevOps平台,直接访问和操作包括项目管理、代码仓库、工作项等关键研发资产,实现智能化全生命周期管理。其功能涵盖代码仓库管理、代码评审、项目管理和组织管理等多个方面,支持如创建分支、合并请求、查询工作项等具体操作。用户可通过通义灵码内置的MCP市场安装云效MCP服务,并配置个人访问令牌完成集成。实际场景中,AI助手可自动分析需求、生成代码、创建功能分支并提交合并请求,极大提升研发效率。
|
13天前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
106 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
FastRead——AI驱动的智能读写生产力引擎,重构信息处理与内容创作新范式
FastRead是一款智能内容处理工具,基于大模型技术,自动解析网页、文档、音频等多源内容,提取关键信息并生成多模态知识卡片。它重构信息处理流程,提升内容创作效率,适用于新闻、金融、教育、营销等多个场景,助力用户高效获取与输出知识。
FastRead——AI驱动的智能读写生产力引擎,重构信息处理与内容创作新范式
|
3月前
|
人工智能 算法 关系型数据库
AI编码不是梦:手把手教你指挥Agent开发需求
AI编码不是梦:手把手教你指挥Agent开发需求
1225 24
|
6月前
|
人工智能 自然语言处理 数据挖掘
DeepSeek:重构办公效率的AI新范式
DeepSeek作为新一代AI办公平台,通过语义理解、流程重构和决策支持三大引擎,重新定义办公效率。它以深度语义模型实现合同审核等任务的高效精准,用智能流程挖掘优化业务链条,并融合行业知识图谱辅助决策。数据显示,DeepSeek可大幅压缩时间成本、提升质量并带来显著ROI。其从“人找信息”到“信息找人”的范式转变,推动企业迈向认知联网与群体智能时代,开启办公效率的指数级跃迁。这不仅是工具革新,更是生产力模式的根本转型。
207 0

热门文章

最新文章