基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(1)

简介: 基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计

前言

车辆检测追踪与流量计数系统是智能交通系统的重要组成部分,对于交通规划、交通拥堵管理以及道路安全都有着至关重要的作用。该系统通过采用先进的YOLOv8图像识别和ByteTrack跟踪算法,能够在高流量和复杂交通场景中实现高精度的车辆检测与跟踪,准确完成自行绘制任意一条线段的过线计数。这有助于快速响应交通状况变化,为城市交通管理提供实时数据支持,增强道路使用效率,并可以减少交通拥堵和事故率。

车辆检测追踪与流量计数系统的应用场景主要包括:

城市交通监控:提供城市路网的实时交通流量数据,帮助交通管理部门制定调控措施。

高速公路管理:监测高速公路上的车流量,为拥堵预警和车辆分流提供数据支撑。

收费站车流计数:在收费站自动计数通过车辆,高效实现收费管理和排队车辆控制。

停车场监控:自动统计停车场的车辆进出数量,优化车位的分配和管理。

交通规划:长期收集交通流量数据,为城市交通布局和基础设施建设提供规划依据。

交通行为研究:分析车辆流量和行驶模式,用于交通行为学的研究。

总结来说,车辆检测追踪与流量计数系统对于实现智慧城市的交通管理有着不可替代的作用,它不仅可以提高交通管理的实时性和准确性,还能为长期交通规划和研究提供大量可靠数据。随着技术的不断进步,这一系统将进一步提升交通运行效率,促进城市的可持续发展。

博主通过搜集道路车辆的相关数据图片,根据YOLOv8的目标检测与ByteTrack多目标追踪技术,基于python与Pyqt5开发了一款界面简洁的车辆检测追踪与流量计数系统,可支持视频以及摄像头检测本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持视频与摄像头中的车辆多目标检测追踪;
2. 可自行绘制任意方向线段,实现双向的过线计数统计,默认从下到上、从左向右为正向,另一个方向为反向;
3. 界面可实时显示双向过线数量通行总数检测帧率检测时长等信息;
4. 可选择画面中是否显示追踪轨迹显示检测框显示检测标签

注:本系统过线计数是依据目标中心点是否过线为判断依据的。

界面参数设置说明

  1. 显示追踪轨迹:用于设置检测的视频中是否显示目标追踪轨迹,默认勾选:表示显示追踪轨迹,不勾选则不显示追踪轨迹;
  2. 显示检测框:用于设置检测的视频中是否显示目标检测框,默认勾选:表示显示检测框,不勾选则不显示检测框;
  3. 显示标签:用于设置检测的视频中是否显示目标标签,默认勾选:表示显示检测标签,不勾选则不显示检测标签;
  4. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  5. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

显示追踪轨迹显示检测框显示标签选项的功能效果如下:

(1)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.打开视频后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

(2)摄像头检测演示

1.点击打开摄像头图标,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.打开摄像头后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(2)https://developer.aliyun.com/article/1536911

相关文章
|
6月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
809 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
2月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
475 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
360 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
7月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
515 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
373 73
|
8月前
|
监控 网络安全 开发者
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
225 20
|
7月前
|
监控 Java 计算机视觉
Python图像处理中的内存泄漏问题:原因、检测与解决方案
在Python图像处理中,内存泄漏是常见问题,尤其在处理大图像时。本文探讨了内存泄漏的原因(如大图像数据、循环引用、外部库使用等),并介绍了检测工具(如memory_profiler、objgraph、tracemalloc)和解决方法(如显式释放资源、避免循环引用、选择良好内存管理的库)。通过具体代码示例,帮助开发者有效应对内存泄漏挑战。
326 1
|
8月前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
318 10
|
8月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
285 0
基于Python深度学习果蔬识别系统实现

推荐镜像

更多