【阿旭机器学习实战】【33】中文文本分类之情感分析--朴素贝叶斯、KNN、逻辑回归

简介: 【阿旭机器学习实战】【33】中文文本分类之情感分析--朴素贝叶斯、KNN、逻辑回归

1.查看原始数据结构

关注GZH:阿旭算法与机器学习,回复:“ML33”即可获取本文数据集、源码与项目文档

数据集共有4个文件:

stopwords.txt为停用词文件;

train.negative.txt为训练用负面数据文件;

train.positive.txt为训练用正面数据文件;

test.combined.txxt为测试用数据文件。

文件内容如下:

2.导入数据并进行数据处理

from matplotlib import pyplot as plt
import jieba # 分词
import re # 正则
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

2.1 提取数据与标签

def read_data(path, is_pos=None):
    """
    给定文件的路径,读取文件
    path: path to the data
    is_pos: 是否数据是postive samples. 
    return: (list of review texts, list of labels) 
    """
    reviews, labels  = [], []
    with open(path, 'r',encoding='utf-8') as file:
        review_start  = False
        review_text = []
        for line in file:
            line = line.strip()
            if not line: continue
            if not review_start and line.startswith("<review"):
                review_start = True
                if "label" in line:
                    labels.append(int(line.split('"')[-2]))
                continue                
            if review_start and line == "</review>":
                review_start = False
                reviews.append(" ".join(review_text))
                review_text = []
                continue
            if review_start:
                review_text.append(line)
    if is_pos:
        labels = [1]*len(reviews)
    elif not is_pos is None:
        labels = [0]*len(reviews)
    return reviews, labels
def process_file():
    """
    读取训练数据和测试数据,并对它们做一些预处理
    """    
    train_pos_file = "data_sentiment/train.positive.txt"
    train_neg_file = "data_sentiment/train.negative.txt"
    test_comb_file = "data_sentiment/test.combined.txt"
    
    # 读取文件部分,把具体的内容写入到变量里面
    train_pos_cmts, train_pos_lbs = read_data(train_pos_file, True)
    train_neg_cmts, train_neg_lbs = read_data(train_neg_file, False)
    train_comments = train_pos_cmts + train_neg_cmts
    train_labels = train_pos_lbs + train_neg_lbs
    test_comments, test_labels = read_data(test_comb_file)
    return train_comments, train_labels, test_comments, test_labels
train_comments, train_labels, test_comments, test_labels = process_file()
train_comments[:5]
['发短信特别不方便!背后的屏幕很大用起来不舒服,是手触屏的!切换屏幕很麻烦!',
 '手感超好,而且黑色相比白色在转得时候不容易眼花,找童年的记忆啦。',
 '!!!!!',
 '先付款的   有信用',
 '价格 质量 售后 都很满意']
# 训练数据和测试数据大小
print (len(train_comments), len(test_comments))
print (train_comments[1], train_labels[1])
8064 2500
手感超好,而且黑色相比白色在转得时候不容易眼花,找童年的记忆啦。 1

2.2 过滤停用词

def load_stopwords(path):
    """
    从外部文件中导入停用词
    """
    stopwords = set()
    with open(path, 'r',encoding='utf-8') as in_file:
        for line in in_file:
            stopwords.add(line.strip())
    return stopwords
def clean_non_chinese_symbols(text):
    """
    处理非中文字符
    """
    text = re.sub('[!!]+', "!", text)
    text = re.sub('[??]+', "?", text)
    text = re.sub("[a-zA-Z#$%&\'()*+,-./:;:<=>@,。★、…【】《》“”‘’[\\]^_`{|}~]+", " UNK ", text)
    return re.sub("\s+", " ", text)  
def clean_numbers(text):
    """
    处理数字符号  128  190  NUM 
    """
    return re.sub("\d+", ' NUM ', text)
def preprocess_text(text, stopwords):
    """
    文本的预处理过程
    """
    text = clean_non_chinese_symbols(text)
    text = clean_numbers(text)
    text = " ".join([term for term in jieba.cut(text) if term and not term in stopwords])
    return text
path_stopwords = "./data_sentiment/stopwords.txt"
stopwords = load_stopwords(path_stopwords)
# 对于train_comments, test_comments进行字符串的处理,几个考虑的点:
#   1. 停用词过滤
#   2. 去掉特殊符号
#   3. 去掉数字(比如价格..)
#   4. ...
#   需要注意的点是,由于评论数据本身很短,如果去掉的太多,很可能字符串长度变成0
#   预处理部部分,可以自行选择合适的方案,只要注释就可以。
train_comments_new = [preprocess_text(comment, stopwords) for comment in train_comments]
test_comments_new = [preprocess_text(comment, stopwords) for comment in test_comments]
print (train_comments_new[0], test_comments_new[0])
发短信 特别 不 方便 ! 背后 屏幕 很大 起来 不 舒服   UNK   手触 屏 ! 切换 屏幕 很 麻烦 ! 终于 找到 同道中人 初中   UNK   已经 喜欢 上   UNK   同学 都 鄙夷 眼光 看   UNK   人为   UNK   样子 古怪 说 " 丑 " 当场 气晕 现在 同道中人   UNK   好开心 !   UNK   !   UNK  

2.3 TfidfVectorizer将文本向量化

#   利用tf-idf从文本中提取特征,写到数组里面. 
#   参考:https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
tfidf = TfidfVectorizer()
X_train =  tfidf.fit_transform(train_comments_new) # 训练数据的特征
y_train =  train_labels # 训练数据的label
X_test = tfidf.transform(test_comments_new) # 测试数据的特征
y_test = test_labels# 测试数据的label
print (np.shape(X_train), np.shape(X_test), np.shape(y_train), np.shape(y_test))
(8064, 23101) (2500, 23101) (8064,) (2500,)

3.利用不同模型进行训练与评估

3.1 朴素贝叶斯模型

from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
clf = MultinomialNB()
# 利用朴素贝叶斯做训练
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("accuracy on test data: ", accuracy_score(y_test, y_pred))
accuracy on test data:  0.6368

3.2 k近邻模型

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=1)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("accuracy on test data: ", accuracy_score(y_test, y_pred))
accuracy on test data:  0.524

3.3 逻辑回归模型

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(solver='liblinear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("accuracy on test data: ", accuracy_score(y_test, y_pred))
accuracy on test data:  0.7136


相关文章
|
6月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
513 46
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
591 3
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1276 6
|
7月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
8月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
344 6
|
10月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。

热门文章

最新文章