机器学习多场景实战(一)

简介: 机器学习已广泛应用,从个性化推荐到金融风控,数据指标是评估其效果的关键。数据指标包括活跃用户(DAU, MAU, WAU)衡量用户粘性,新增用户量和注册转化率评估营销效果,留存率(次日、7日、30日)反映用户吸引力,行为指标如PV(页面浏览量)、UV(独立访客)和转化率分析用户行为。产品数据指标如GMV、ARPU、ARPPU和付费率关注业务变现,推广付费指标(CPM, CPC, CPA等)则关乎广告效率。找到北极星指标,如月销售额或用户留存,可指导业务发展。案例中涉及电商销售数据,计算月销售金额、环比、销量、新用户占比、激活率和留存率以评估业务表现。

机器学习已不再局限于理论探讨,而是广泛渗透到我们生活的方方面面,成为解决复杂问题、优化决策过程的强有力工具。从智能推荐系统个性化推送你可能喜爱的电影和商品,到金融风控领域精准识别欺诈交易;每一个应用场景都是机器学习技术多维度、深层次实战的精彩演绎,我们通过一些小案例对业务进行了解~


什么是数据指标💥


  • 数据指标概念:可将某个事件量化,且可形成数字,来衡量目标。


  • 数据指标的作用:当我们确定下来一套指标,就可以用指标来衡量业务,判断业务好坏


数据指标在企业和组织的运营管理中发挥着至关重要的作用,它们不仅是衡量和评价业务性能的工具,还是推动业务发展和改进的关键因素。  



活跃用户指标💥


一个产品是否成功,如果只看一个指标,那么这个指标一定是活跃用户数


  • 日活(DAU):一天内日均活跃设备数
  • 月活(MAU):一个月内的活跃设备数
  • 周活跃数(WAU):一周内活跃设备数
  • 活跃度(DAU/MAU):体现用户的总体粘度,衡量期间内每日活跃用户的交叉重合情况


新增用户指标💥


主要是衡量营销推广渠道效果的最基础指标


  • 日新增注册用户量:统计一天内,即指安装应用后,注册APP的用户数。


  • 周新增注册用户量:统计一周内,即指安装应用后,注册APP的用户数。


  • 月新增注册用户量:统计一月内,即指安装应用后,注册APP的用户数。


  • 注册转化率:从点击广告/下载应用到注册用户的转化。


  • DNU占比:新增用户占活跃用户的比例,可以用来衡量产品健康度


  • 新用户占比活跃用户过高,那说明该APP的活跃是靠推广得来


留存指标💥


是验证APP对用户吸引力的重要指标。通常可以利用用户留存率与竞品进行对比,衡量APP对用户的吸引力


  • 次日留存率:某一统计时段新增用户在第二天再次启动应用的比例
  • 7日留存率:某一统计时段新增用户数在第7天再次启动该应用的比例,14日和30日留存率以此类推


行为指标💥


  • PV(访问次数,Page View):一定时间内某个页面的浏览次数,用户每打开一个网页可以看作一个PV。


  • UV(访问人数,Unique Visitor):一定时间内访问某个页面的人数。


  • 转化率:计算方法与具体业务场景有关


  • 淘宝店铺,转化率=购买产品的人数/所有到达店铺的人数


  • 在广告业务中,广告转化率=点击广告进入推广网站的人数/看到广告的人数。


  • 转发率:转发率=转发某功能的用户数/看到该功能的用户数



产品数据指标💥


  • GMV (Gross Merchandise Volume):指成交总额,也就是零售业说的“流水”


  • 人均付费=总收入/总用户数


  • 人均付费在游戏行业叫ARPU(Average Revenue Per User)


  • 电商行业叫客单价


  • 付费用户人均付费(ARPPU,Average Revenue Per Paying User)=总收入/付费人数,这个指标用于统计付费用户的平均收入


  • 付费率=付费人数/总用户数。付费率能反映产品的变现能力和用户质量


  • 复购率是指重复购买频率,用于反映用户的付费频率。


推广付费指标💥


  • CPM(Cost Per Mille) :展现成本,或者叫千人展现成本


  • CPC(Cost Per Click) 点击成本,即每产生一次点击所花费的成本


  • 按投放的实际效果付费(CPA,Cost Per Action)包括:


  • CPD(Cost Per Download):按App的下载数付费;


  • CPI(Cost Per Install):按安装App的数量付费,也就是下载后有多少人安装了App;


  • CPS(Cost Per Sales):按完成购买的用户数或者销售额来付费。


💫根据目前的业务重点,找到北极星指标,在实际业务中,北极星指标一旦确定,可以像天空中的北极星一样,指引着全公司向着同一个方向努力。


Python指标计算案例


数据中包含了某电商网站从2009年12月到2011年12月两年间的销售流水, 每条记录代表了一条交易记录, 包含如下字段


Invoice: 发票号码


StockCode: 商品编码


Description: 商品简介


InvoiceDate: 发票日期


Price: 商品单价


Customer ID: 用户ID


Country: 用户所在国家


计算的指标


  • 月销售金额(月GMV)


  • 月销售额环比


  • 月销量


  • 新用户占比: 新老用户


  • 激活率


  • 月留存率


from datetime import datetime, timedelta
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
 
 
data_1 = pd.read_excel('online_retail_II.xlsx',sheet_name='Year 2009-2010')
data_2 = pd.read_excel('online_retail_II.xlsx',sheet_name='Year 2010-2011')


数据清洗


retail_data['购买时间'].describe()
 
retail_data_clean = retail_data[(retail_data['商品单价']>0) & (retail_data['购买数量']>0)


计算月销量指标


商品编号相当于 SKU,SKU=Stock Keeping Unit(库存量单位)


retail_data_clean = retail_data_clean.query("(商品编号!='B') and (商品编号!='TEST001') and (商品编号!='TEST002') ")
 
 
retail_data_clean['购买年月'] = pd.to_datetime(retail_data_clean['购买时间']).dt.to_period('M')
 
retail_data_clean['金额'] = retail_data_clean['商品单价'] * retail_data_clean['购买数量']
 
gmv_m = retail_data_clean.groupby(['购买年月'])['金额'].sum().reset_index()
 
gmv_m.columns = ['购买年月', '月GMV']


计算月销售额环比


gmv_m['金额'].pct_change()
  • 该函数计算当前单元格和上一个单元格差异的百分比



机器学习多场景实战(二)+https://developer.aliyun.com/article/1544808?spm=a2c6h.13148508.setting.22.22454f0eHFZZj3


相关文章
|
1月前
|
机器学习/深度学习 数据采集 算法
【阿旭机器学习实战】【35】员工离职率预测---决策树与随机森林预测
【阿旭机器学习实战】【35】员工离职率预测---决策树与随机森林预测
|
4天前
|
机器学习/深度学习 数据处理 Python
机器学习实战:房价预测项目
【7月更文挑战第13天】本文详细介绍了基于机器学习的房价预测项目的实战过程。从数据准备、特征工程、模型构建到结果评估,每一步都至关重要。通过合理的特征选择和模型优化,我们可以构建出性能优异的房价预测模型,为房地产行业的决策提供有力支持。未来,随着机器学习技术的不断发展和应用场景的不断拓展,房价预测模型将更加智能化和精准化。
|
17天前
|
机器学习/深度学习 数据采集 存储
人工智能平台PAI产品使用合集之FeatureStore是否支持推荐场景下的session特征
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
25天前
|
机器学习/深度学习 搜索推荐 数据挖掘
机器学习多场景实战(二 )
这是一个关于机器学习应用于电商平台用户行为分析的概要,包括以下几个关键点: 1. **月活跃用户分析**:通过购买记录确定活跃用户,计算每月活跃用户数。 2. **月客单价**:定义为月度总销售额除以月活跃用户数,衡量平均每位活跃用户的消费金额。 3. **新用户占比**:基于用户首次购买和最近购买时间判断新老用户,计算每月新用户的购买比例。 4. **激活率计算**:定义为当月与上月都有购买行为的用户数占上月购买用户数的比例,反映用户留存情况。 5. **Pandas数据操作**:使用Pandas库进行数据集合并(concat和merge),以及计算不同维度的组合。
|
28天前
|
机器学习/深度学习 人工智能 Java
【Sping Boot与机器学习融合:构建赋能AI的微服务应用实战】
【Sping Boot与机器学习融合:构建赋能AI的微服务应用实战】
24 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
机器学习场景的的任务
【6月更文挑战第14天】机器学习场景的的任务。
15 2
|
1月前
|
机器学习/深度学习 搜索推荐 算法
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
|
1月前
|
机器学习/深度学习 数据可视化 算法
【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
|
1月前
|
机器学习/深度学习 算法 Windows
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
|
21天前
|
数据采集 机器学习/深度学习 算法
机器学习方法之决策树算法
决策树算法是一种常用的机器学习方法,可以应用于分类和回归任务。通过递归地将数据集划分为更小的子集,从而形成一棵树状的结构模型。每个内部节点代表一个特征的判断,每个分支代表这个特征的某个取值或范围,每个叶节点则表示预测结果。
80 1

热门文章

最新文章