【阿旭机器学习实战】【35】员工离职率预测---决策树与随机森林预测

简介: 【阿旭机器学习实战】【35】员工离职率预测---决策树与随机森林预测

1.获取数据

关注GZH:阿旭算法与机器学习,回复:“ML35”即可获取本文数据集、源码与项目文档

# 引入工具包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as matplot
import seaborn as sns
%matplotlib inline
# 读入数据到Pandas Dataframe "df"
df = pd.read_csv('HR_comma_sep.csv', index_col=None)

2.数据预处理

# 检测是否有缺失数据
df.isnull().any()
satisfaction_level       False
last_evaluation          False
number_project           False
average_montly_hours     False
time_spend_company       False
Work_accident            False
left                     False
promotion_last_5years    False
sales                    False
salary                   False
dtype: bool
# 数据的样例
df.head()
satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident left promotion_last_5years sales salary
0 0.38 0.53 2 157 3 0 1 0 sales low
1 0.80 0.86 5 262 6 0 1 0 sales medium
2 0.11 0.88 7 272 4 0 1 0 sales medium
3 0.72 0.87 5 223 5 0 1 0 sales low
4 0.37 0.52 2 159 3 0 1 0 sales low

注:“turnover”列为标签:1表示离职,0表示不离职,其他列均为特征值

# 重命名
df = df.rename(columns={'satisfaction_level': 'satisfaction', 
                        'last_evaluation': 'evaluation',
                        'number_project': 'projectCount',
                        'average_montly_hours': 'averageMonthlyHours',
                        'time_spend_company': 'yearsAtCompany',
                        'Work_accident': 'workAccident',
                        'promotion_last_5years': 'promotion',
                        'sales' : 'department',
                        'left' : 'turnover'
                        })
# 将预测标签‘是否离职’放在第一列
front = df['turnover']
df.drop(labels=['turnover'], axis=1, inplace = True)
df.insert(0, 'turnover', front)
df.head()
turnover satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion department salary
0 1 0.38 0.53 2 157 3 0 0 sales low
1 1 0.80 0.86 5 262 6 0 0 sales medium
2 1 0.11 0.88 7 272 4 0 0 sales medium
3 1 0.72 0.87 5 223 5 0 0 sales low
4 1 0.37 0.52 2 159 3 0 0 sales low

3.分析数据

  • 14999 条数据, 每一条数据包含 10 个特征
  • 总的离职率: 24%
  • 平均满意度为 0.61
df.shape
(14999, 10)
# 特征数据类型. 
df.dtypes
turnover                 int64
satisfaction           float64
evaluation             float64
projectCount             int64
averageMonthlyHours      int64
yearsAtCompany           int64
workAccident             int64
promotion                int64
department              object
salary                  object
dtype: object
turnover_rate = df.turnover.value_counts() / len(df)
turnover_rate
0    0.761917
1    0.238083
Name: turnover, dtype: float64
# 显示统计数据
df.describe()
turnover satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion
count 14999.000000 14999.000000 14999.000000 14999.000000 14999.000000 14999.000000 14999.000000 14999.000000
mean 0.238083 0.612834 0.716102 3.803054 201.050337 3.498233 0.144610 0.021268
std 0.425924 0.248631 0.171169 1.232592 49.943099 1.460136 0.351719 0.144281
min 0.000000 0.090000 0.360000 2.000000 96.000000 2.000000 0.000000 0.000000
25% 0.000000 0.440000 0.560000 3.000000 156.000000 3.000000 0.000000 0.000000
50% 0.000000 0.640000 0.720000 4.000000 200.000000 3.000000 0.000000 0.000000
75% 0.000000 0.820000 0.870000 5.000000 245.000000 4.000000 0.000000 0.000000
max 1.000000 1.000000 1.000000 7.000000 310.000000 10.000000 1.000000 1.000000
# 分组的平均数据统计
turnover_Summary = df.groupby('turnover')
turnover_Summary.mean()
satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion
turnover
0 0.666810 0.715473 3.786664 199.060203 3.380032 0.175009 0.026251
1 0.440098 0.718113 3.855503 207.419210 3.876505 0.047326 0.005321

3.1 相关性分析

# 相关性矩阵
corr = df.corr()
#corr = (corr)
sns.heatmap(corr, 
            xticklabels=corr.columns.values,
            yticklabels=corr.columns.values)
corr
turnover satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion
turnover 1.000000 -0.388375 0.006567 0.023787 0.071287 0.144822 -0.154622 -0.061788
satisfaction -0.388375 1.000000 0.105021 -0.142970 -0.020048 -0.100866 0.058697 0.025605
evaluation 0.006567 0.105021 1.000000 0.349333 0.339742 0.131591 -0.007104 -0.008684
projectCount 0.023787 -0.142970 0.349333 1.000000 0.417211 0.196786 -0.004741 -0.006064
averageMonthlyHours 0.071287 -0.020048 0.339742 0.417211 1.000000 0.127755 -0.010143 -0.003544
yearsAtCompany 0.144822 -0.100866 0.131591 0.196786 0.127755 1.000000 0.002120 0.067433
workAccident -0.154622 0.058697 -0.007104 -0.004741 -0.010143 0.002120 1.000000 0.039245
promotion -0.061788 0.025605 -0.008684 -0.006064 -0.003544 0.067433 0.039245 1.000000


正相关的特征:

  • projectCount VS evaluation: 0.349333
  • projectCount VS averageMonthlyHours: 0.417211
  • averageMonthlyHours VS evaluation: 0.339742

负相关的特征:

  • satisfaction VS turnover: -0.388375
# 比较离职和未离职员工的满意度
emp_population = df['satisfaction'][df['turnover'] == 0].mean()
emp_turnover_satisfaction = df[df['turnover']==1]['satisfaction'].mean()
print( '未离职员工满意度: ' + str(emp_population))
print( '离职员工满意度: ' + str(emp_turnover_satisfaction) )
未离职员工满意度: 0.666809590479516
离职员工满意度: 0.44009801176140917

3.2 进行 T-Test


进行一个 t-test, 看离职员工的满意度是不是和未离职员工的满意度明显不同

import scipy.stats as stats
stats.ttest_1samp(a = df[df['turnover']==1]['satisfaction'], # 离职员工的满意度样本
                  popmean = emp_population)  # 未离职员工的满意度均值
Ttest_1sampResult(statistic=-51.3303486754725, pvalue=0.0)

T-Test 显示pvalue (0) 非常小, 所以他们之间是显著不同的

degree_freedom = len(df[df['turnover']==1])
LQ = stats.t.ppf(0.025,degree_freedom)  # 95%致信区间的左边界
RQ = stats.t.ppf(0.975,degree_freedom)  # 95%致信区间的右边界
print ('The t-分布 左边界: ' + str(LQ))
print ('The t-分布 右边界: ' + str(RQ))
The t-分布 左边界: -1.9606285215955626
The t-分布 右边界: 1.9606285215955621
# 概率密度函数估计
fig = plt.figure(figsize=(15,4),)
ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'evaluation'] , color='b',shade=True,label='no turnover')
ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'evaluation'] , color='r',shade=True, label='turnover')
ax.set(xlabel='Employee Evaluation', ylabel='Frequency')
ax.legend()
plt.title('Employee Evaluation Distribution - Turnover V.S. No Turnover')
Text(0.5, 1.0, 'Employee Evaluation Distribution - Turnover V.S. No Turnover')

# 概率密度函数估计
fig = plt.figure(figsize=(15,4))
ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'averageMonthlyHours'] , color='b',shade=True, label='no turnover')
ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'averageMonthlyHours'] , color='r',shade=True, label='turnover')
ax.legend()
ax.set(xlabel='Employee Average Monthly Hours', ylabel='Frequency')
plt.title('Employee AverageMonthly Hours Distribution - Turnover V.S. No Turnover')
Text(0.5, 1.0, 'Employee AverageMonthly Hours Distribution - Turnover V.S. No Turnover')

# 概率密度函数估计
fig = plt.figure(figsize=(15,4))
ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'satisfaction'] , color='b',shade=True, label='no turnover')
ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'satisfaction'] , color='r',shade=True, label='turnover')
plt.title('Employee Satisfaction Distribution - Turnover V.S. No Turnover')
ax.legend()
<matplotlib.legend.Legend at 0x281a5a6b820>

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, precision_score, recall_score, confusion_matrix, precision_recall_curve
# 将string类型转换为整数类型
df["department"] = df["department"].astype('category').cat.codes
df["salary"] = df["salary"].astype('category').cat.codes
# 产生X, y
target_name = 'turnover'
X = df.drop('turnover', axis=1)
y = df[target_name]
# 将数据分为训练和测试数据集
# 注意参数 stratify = y 意味着在产生训练和测试数据中, 离职的员工的百分比等于原来总的数据中的离职的员工的百分比
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, random_state=123, stratify=y)
df.head()
turnover satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion department salary
0 1 0.38 0.53 2 157 3 0 0 7 1
1 1 0.80 0.86 5 262 6 0 0 7 2
2 1 0.11 0.88 7 272 4 0 0 7 2
3 1 0.72 0.87 5 223 5 0 0 7 1
4 1 0.37 0.52 2 159 3 0 0 7 1

4. 建立预测模型:Decision Tree V.S. Random Forest

from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
# 决策树
dtree = tree.DecisionTreeClassifier(
    criterion='entropy',
    #max_depth=3, # 定义树的深度, 可以用来防止过拟合
    min_weight_fraction_leaf=0.01 # 定义叶子节点最少需要包含多少个样本(使用百分比表达), 防止过拟合
    )
dtree = dtree.fit(X_train,y_train)
print ("\n\n ---决策树---")
dt_roc_auc = roc_auc_score(y_test, dtree.predict(X_test))
print ("决策树 AUC = %2.2f" % dt_roc_auc)
print(classification_report(y_test, dtree.predict(X_test)))
# 随机森林
rf = RandomForestClassifier(
    criterion='entropy',
    n_estimators=1000, 
    max_depth=None, # 定义树的深度, 可以用来防止过拟合
    min_samples_split=10, # 定义至少多少个样本的情况下才继续分叉
    #min_weight_fraction_leaf=0.02 # 定义叶子节点最少需要包含多少个样本(使用百分比表达), 防止过拟合
    )
rf.fit(X_train, y_train)
print ("\n\n ---随机森林---")
rf_roc_auc = roc_auc_score(y_test, rf.predict(X_test))
print ("随机森林 AUC = %2.2f" % rf_roc_auc)
print(classification_report(y_test, rf.predict(X_test)))
---决策树---
决策树 AUC = 0.93
              precision    recall  f1-score   support
           0       0.97      0.98      0.97      1714
           1       0.93      0.89      0.91       536
    accuracy                           0.96      2250
   macro avg       0.95      0.93      0.94      2250
weighted avg       0.96      0.96      0.96      2250
 ---随机森林---
随机森林 AUC = 0.97
              precision    recall  f1-score   support
           0       0.98      1.00      0.99      1714
           1       0.99      0.94      0.97       536
    accuracy                           0.98      2250
   macro avg       0.99      0.97      0.98      2250
weighted avg       0.98      0.98      0.98      2250

5. 模型评估

5.1ROC 图


# ROC 图
from sklearn.metrics import roc_curve
rf_fpr, rf_tpr, rf_thresholds = roc_curve(y_test, rf.predict_proba(X_test)[:,1])
dt_fpr, dt_tpr, dt_thresholds = roc_curve(y_test, dtree.predict_proba(X_test)[:,1])
plt.figure()
# 随机森林 ROC
plt.plot(rf_fpr, rf_tpr, label='Random Forest (area = %0.2f)' % rf_roc_auc)
# 决策树 ROC
plt.plot(dt_fpr, dt_tpr, label='Decision Tree (area = %0.2f)' % dt_roc_auc)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Graph')
plt.legend(loc="lower right")
plt.show()

5.2通过决策树分析不同的特征的重要性

## 画出决策树特征的重要性 ##
importances = rf.feature_importances_
feat_names = df.drop(['turnover'],axis=1).columns
indices = np.argsort(importances)[::-1]
plt.figure(figsize=(12,6))
plt.title("Feature importances by RandomForest")
plt.bar(range(len(indices)), importances[indices], color='lightblue',  align="center")
plt.step(range(len(indices)), np.cumsum(importances[indices]), where='mid', label='Cumulative')
plt.xticks(range(len(indices)), feat_names[indices], rotation='vertical',fontsize=14)
plt.xlim([-1, len(indices)])
plt.show()

## 画出决策树的特征的重要性 ##
importances = dtree.feature_importances_
feat_names = df.drop(['turnover'],axis=1).columns
indices = np.argsort(importances)[::-1]
plt.figure(figsize=(12,6))
plt.title("Feature importances by Decision Tree")
plt.bar(range(len(indices)), importances[indices], color='lightblue',  align="center")
plt.step(range(len(indices)), np.cumsum(importances[indices]), where='mid', label='Cumulative')
plt.xticks(range(len(indices)), feat_names[indices], rotation='vertical',fontsize=14)
plt.xlim([-1, len(indices)])
plt.show()


相关文章
|
2月前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
95 10
|
1月前
|
机器学习/深度学习 算法 前端开发
【机器学习】Bagging和随机森林
【机器学习】Bagging和随机森林
|
12天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
38 5
|
30天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
63 2
|
30天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
56 1
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
50 5
|
1月前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
83 3
|
1月前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
38 1
|
24天前
|
数据采集 机器学习/深度学习 TensorFlow
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
92 0
|
1月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!

热门文章

最新文章