CodeFormer——AI驱动的面部图像修复与增强

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: CodeFormer是由南洋理工大学和商汤科技联合研发的AI人脸复原模型,结合VQGAN和Transformer技术,能从模糊或马赛克图像中生成清晰图像。它具备老照片修复、黑白照片彩色化、马赛克修复和低码率视频增强等功能。安装过程涉及miniconda3、Python环境配置、相关库的安装及模型训练数据下载。在测试视频增强时,虽然初期遇到ffmpeg导入问题,但通过安装ffmpeg-python得以解决,不过CPU占用率高。此外,还展示了对图片进行增强的命令行操作及结果示例。

引言

在图像处理领域,AI技术正以前所未有的速度推动着图像修复与增强的发展。CodeFormer,一款由南洋理工大学与商汤科技联合开发的人脸复原模型,利用VQGAN和Transformer等前沿技术,为模糊或马赛克图像的修复提供了强大的解决方案。本文将引导你完成CodeFormer的安装配置,并演示其在照片修复和视频增强上的应用。



参考文献和Github地址:

Zhou, S., Zhu, Y., Wang, X., Wang, Z., & Zhang, J. (2022). CodeFormer: Towards Robust Blind Face Restoration with Codebook Lookup Transformer. arXiv preprint arXiv:2205.09991.

GitHub repository. (Accessed June 12, 2024).



安装与环境搭建

首先,确保你的系统已安装miniconda3。创建一个Python 3.8的虚拟环境:

Bash

/home/sean.xd/miniconda3/bin/conda create -n codeformer python=3.8

接着,激活新创建的环境并安装venv

Bash

source activate codeformer
/home/sean.xd/miniconda3/envs/codeformer/bin/python -m venv venv
source venv/bin/activate

根据官方指南,安装项目依赖:

Bash

pip install -r requirements.txt

安装过程中可能会遇到缺少cython的问题,手动安装后即可继续:

Bash

pip install cython
python basicsr/setup.py develop

进一步安装dlibffmpeg

Bash

/home/sean.xd/miniconda3/bin/conda install -c conda-forge dlib
/home/sean.xd/miniconda3/bin/conda install -c conda-forge ffmpeg

下载预训练模型,准备测试:

Bash

python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py dlib
python scripts/download_pretrained_models.py CodeFormer

测试视频增强功能

尝试使用CodeFormer增强视频,但需注意,若PyTorch版本与CUDA不匹配,会导致警告信息提示。确保软件版本一致以获得最佳性能:

Bash

python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path inputs/xudong.mp4

在测试过程中,观察到CPU使用率极高,表明模型在CPU上运行时计算量较大,对于长时间处理或大规模数据集,建议使用GPU加速。

测试图片增强功能

项目附带了一个测试目录,其中包含示例图片。运行增强命令:

Bash

python inference_codeformer.py -w 0.7 --bg_upsampler realesrgan  --face_upsample  --input_path inputs/whole_imgs/03.jpg

结果显示,即使在CPU上,CodeFormer也能有效地检测并修复图像中的面部,最终结果保存在指定目录。

结语

通过上述步骤,我们不仅完成了CodeFormer的安装配置,还体验了其在面部图像修复与增强方面的强大功能。尽管在CPU上运行效率较低,但在GPU环境下,CodeFormer的表现将更加出色,为图像修复领域带来革命性的变化。


注:以上实验环境与测试均基于作者个人设置,具体效果可能因硬件配置差异而有所不同。



测试时候,使用了朱茵在大话西游里面的剧照,效果非常好,放上来审核不通过,所以就删掉了。




相关文章
|
3月前
|
人工智能 编解码 物联网
设计师集体破防!UNO:字节跳动创新AI图像生成框架,多个参考主体同框生成,位置/材质/光影完美对齐
UNO是字节跳动开发的AI图像生成框架,通过渐进式跨模态对齐和通用旋转位置嵌入技术,解决了多主体场景下的生成一致性问题。该框架支持单主体特征保持与多主体组合生成,在虚拟试穿、产品设计等领域展现强大泛化能力。
225 4
设计师集体破防!UNO:字节跳动创新AI图像生成框架,多个参考主体同框生成,位置/材质/光影完美对齐
|
2月前
|
人工智能 JavaScript Devops
云效 MCP Server:AI 驱动的研发协作新范式
云效MCP Server是阿里云云效平台推出的模型上下文协议(Model Context Protocol)标准化接口系统,作为AI助手与DevOps平台的核心桥梁。通过该协议,AI大模型可无缝集成云效DevOps平台,直接访问和操作包括项目管理、代码仓库、工作项等关键研发资产,实现智能化全生命周期管理。其功能涵盖代码仓库管理、代码评审、项目管理和组织管理等多个方面,支持如创建分支、合并请求、查询工作项等具体操作。用户可通过通义灵码内置的MCP市场安装云效MCP服务,并配置个人访问令牌完成集成。实际场景中,AI助手可自动分析需求、生成代码、创建功能分支并提交合并请求,极大提升研发效率。
|
3月前
|
机器学习/深度学习 人工智能 计算机视觉
AI图像质感还原堪比专业摄影!Miracle F1:美图WHEE全新AI图像生成模型,支持超写实与多风格生成
美图WHEE推出的Miracle F1采用扩散模型技术,通过精准语义理解和多风格生成能力,可产出具有真实光影质感的专业级图像作品。
172 5
AI图像质感还原堪比专业摄影!Miracle F1:美图WHEE全新AI图像生成模型,支持超写实与多风格生成
|
2月前
|
数据采集 机器学习/深度学习 人工智能
运维人的“福音”?AI 驱动的自动化网络监控到底香不香!
运维人的“福音”?AI 驱动的自动化网络监控到底香不香!
162 0
|
3月前
|
存储 人工智能 安全
AI驱动的幼儿跌倒检测——视频安全系统的技术解析
幼儿跌倒检测系统基于AI视频技术,融合人体姿态识别与实时报警功能,为幼儿园安全管理提供智能化解决方案。系统通过YOLOv9、OpenPose等算法实现高精度跌倒检测(准确率达98%),结合LSTM时间序列分析减少误报,支持目标分类区分幼儿与成人,并具备事件存储、实时通知及开源部署优势。其高效、灵活、隐私合规的特点显著提升安全管理效率,助力优化园所运营。
130 0
AI驱动的幼儿跌倒检测——视频安全系统的技术解析
|
3月前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
421 3
|
2月前
|
机器学习/深度学习 人工智能 Kubernetes
开源AI驱动的商业综合体保洁管理——智能视频分析系统的技术解析
智能保洁管理系统通过计算机视觉与深度学习技术,解决传统保洁模式中监管难、效率低的问题。系统涵盖垃圾滞留监测、地面清洁度评估、设施表面检测等功能,实现高精度(96%以上)、实时响应(<200毫秒)。基于开源TensorFlow与Kubernetes架构,支持灵活部署与定制开发,适用于商场、机场等场景,提升管理效率40%以上。未来可扩展至气味监测等领域,推动保洁管理智能化升级。
136 26
|
3月前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
406 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
|
2月前
|
人工智能 弹性计算 智能设计
🎨 三步打造AI创意工坊 | 通义万相图像生成服务极速部署指南
🚀 从零到大师 | 通义万相智能创作系统部署指南