算法与数据结构高手养成:朴素的贪心法(上)最优化策略

简介: 算法与数据结构高手养成:朴素的贪心法(上)最优化策略

朴素的贪心法(上)最优化策略

常见贪心法归类

1.最优化策略——每一次都采用当前最优决策

2.构造法——通过总结和归纳找到规律,直接推导出答案

3.二分答案——通过答案反推,验证合法性从而确定最优解

何为“朴素”贪心

  • 所谓“朴素”,就是可以通过确定性的贪心步骤得出最优解
  • 有些问题很难通过确定性贪心步骤得到最优解,但可以通过在贪心时加入随机因素(不是每次都选最优策略,而是几种较好策略中随机选择一种),来得到近似最优解
  • 当随机次数足够多时,这个近似最优解就会无限逼近最优解这个方法称为随机贪心法,后续会

最优化策略:取石子

每次都选取最大~

取石子(改)

由于条件限制,不能做到每次都拿最多,如果第一次拿3,第二次拿4时,第三次就不能再拿了

不适用贪心,但动态规划可解

最优化策略适用条件

第一,有明确的阶段,且每个阶段的决策都很清晰

  • 阶段一定是按顺序执行的
  • 对于第K(1≤K≤N)个阶段,前K轮的最优决策集合称为局部最优解当K=N时,称为全局最优解

第二,一个阶段的局部最优解,一定是从前面阶段的局部最优解得到的,这个特性称之为最优子结构

  • 例:取石子里,第二轮如果取4,那么无论第三轮取什么,总数一定不是最多。只有第二轮取5(局部最优解)第三轮才有可能产生总数最多的情况
  • 反例:取石子(改)里,第二轮取5是当前最优,但第三轮取4是最优。只有第二轮不取当前最优时,第三轮才能取到最优——不适用贪心法

第三,后面阶段的决策,不会影响到前面阶段的决策,这个特性称为无后效性

  • 例:无论第二轮取哪一堆,都不影响第一轮取的石子
  • 反例:题目修改为“每种数目的石子只能取一次,比如这一次取了5个,下一次就不能再取5个”——后面选择跟前面冲突的话,就需要返回修改之前的选择

最优化策略:分析步骤

1.划分问题的阶段决策

2.验证最优子结构无后效性

3.通过比较和判断,确定每一步的最优策略

例题:机器工厂(USACO)

步骤1:划分阶段和决策

  • 阶段:周数 K(1 ≤K≤ N)
  • 决策:第 K周生产多少台机器

步骤2:验证最优子结构/无后效性

  • 无后效性:满足
  • 因为第 K 周生产几台都不影响第1~K-1周的交付(不可能后面生产的穿越回去交付前面的订单)
  • 最优子结构呢?

局部最优解定义:完成前 K周订单的总成本最小(K=N)时就是全局最优解 在这个定义下,局部最优解一定是刚好满足K周订单需求即可不会额外生产供以后交付,否则会浪费

不满足最优子结构?

步骤2.5:修改决策

  • 问题出在决策:不能只满足本周的需求而不考虑后续需要
  • 反向思考1:本周要交付的机器可以是本周生产,也可以是之前生产
  • 反向思考2:不管前面是哪周生产,成本都可以直接算出来(等于该周生产成本+储藏成本x周数差)

例:前三周每个机器生产成本分别是1,5,6,储藏成本是2

第三周要交付的机器如果在当周生产,成本是6,如果要在第二周生产,成本是5+2x1=7;如果要在第一周生产,成本是1+2x2=5

所以,第三周交付的机器,在第一周生产最省钱

步骤2.5:重新验证最优子结构/无后效性

  • 决策修改为:第K周要交付的机器应该在第几周生产
  • 无后效性仍然满足
  • 最优子结构也满足:前K周总成本最低的情况,一定是从前K-1周总成本最低的情况推出来的

步骤3:最优化策略

  • 对于第K周,计算本周交付的机器在第i(1≤i≤K)周生产并储藏到第K周,分别所需要的成本
  • 选择成本最低的一周,由它来生产第K周需要交付的订单
  • 将这个最低的成本加上前K-1周的最低总成本,得到前K周的最低总成本(局部最优解)。K=N时得到的就是最终答案

虽然问题解决了,但是这个方法的效率还有提升空间

决策时,选择某一成本最低的一周的时候,我们刚刚采用的策略是挨个计算出每一周的成本,从而选择最小的,涉及了很多重复计算,成本的变化是有一定规律的,并不需要每次都进行计算~

步骤3:最优化策略(改进)

直接把时间复杂度降低了一个数量级~时间复杂度对O(n)

代码:机器工厂(C++)

    int n, s; // 声明变量n和s,分别表示总共的星期数和保养一台机器的费用
    cin >> n >> s; // 输入总星期数和保养费用
    int p, y, min_p = INT_MAX - s; // 声明变量p、y和min_p,min_p初始化为INT_MAX-s,用来存放当前最小的生产成本
    long long total = 0; // 声明变量total用来存放总花费
    for (int i = 0 ;i < n; i++) // 循环n次,表示n个星期
    {
        cin >> p >> y; // 输入当前星期生产一台机器的成本p和订单数量y
        min_p = min(min_p + s, p); // 对当前最小成本进行更新,考虑了保养费用
        total += min_p * y; // 计算当前星期的总花费,加上当前最小成本乘以订单数量
    }
    cout << total << endl; // 输出总花费
 
    return 0;

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

目录
相关文章
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
4天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
5天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
5天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
9 1
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6天前
|
数据采集 缓存 算法
算法优化的常见策略有哪些
【10月更文挑战第20天】算法优化的常见策略有哪些
|
6天前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
20天前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
18 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
1天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
20天前
初步认识栈和队列
初步认识栈和队列
47 10