YOLOv8改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附完整代码+小白必备】

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
简介: 在这个教程中,作者介绍了如何在YOLOv8图像识别模型中集成DoubleAttention模块,以提升模型捕捉长距离关系的效率。DoubleAttention通过全局和局部注意力模块捕获图像的全局和局部信息。教程详细阐述了DoubleAttention的工作原理,并提供了相应的代码实现。读者将学习到如何在YOLOv8的网络结构中添加这一组件,并给出了完整的代码示例。此外,还分享了GFLOPs的计算,以及鼓励读者尝试在不同位置添加注意力机制作为进阶练习。完整代码和更多详情可在提供的链接中获取。


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

在图像识别中,学习捕捉长距离关系是基础。现有的CNN模型通常通过增加深度来建立这种关系,但这种形式效率极低。因此,双重注意力被提出,这是一个新颖的组件,它能够从输入图像的整个时空空间聚合和传播信息丰富的全局特征,使得后续的卷积层能够高效地访问整个空间特征。这个组件通过两步的双重注意力机制来设计,第一步通过二阶注意力池化从整个空间收集特征到一组紧凑集合,第二步通过另一种注意力自适应选择和分配特征到每个位置。在本文中,给大家带来的教程是在原来的网络的基础上添加DoubleAttention。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

1.原理

image.png

官方论文:A2 -Nets: Double Attention Networks——点击即可跳转

官方代码:A2 -Nets: Double Attention Networks官方代码仓库——点击即可跳转

双重注意力网络(Double Attention Networks)是一种用于计算机视觉任务的神经网络架构,旨在有效地捕获图像中的全局和局部信息,以提高任务的性能。它是建立在注意力机制的基础上的,通过两个注意力模块来分别关注全局和局部信息。以下是关于Double Attention Networks的详细解释:

注意力机制: 注意力机制是一种模仿人类视觉系统的方法,它允许神经网络在处理输入数据时集中注意力在最相关的部分上。在计算机视觉中,这意味着网络可以动态地选择关注图像的不同部分,从而提高任务的性能。

双重注意力: 双重注意力网络引入了两个注意力模块,分别用于全局和局部信息。这两个模块分别关注图像的整体结构和局部细节,从而充分利用了图像中的各种信息。

全局注意力模块: 全局注意力模块负责捕获图像中的全局信息。它通常采用全局池化(global pooling)操作,将整个特征图进行压缩,然后通过一系列的神经网络层来学习全局上下文信息。这个模块能够帮助网络理解图像的整体语义结构。

局部注意力模块: 局部注意力模块专注于捕获图像中的局部信息。它通常采用一种局部感知机制(local perception),通过对图像进行分块或者使用卷积操作来提取局部特征,并且通过注意力机制来选择最相关的局部信息。这个模块有助于网络在处理具有局部结构的图像时更加准确。

特征融合: 在双重注意力网络中,全局和局部注意力模块学习到的特征需要被合并起来以供最终任务使用。这通常通过简单地将两个模块的输出进行融合,例如连接或者加权求和操作。这种特征融合使得网络能够综合利用全局和局部信息来完成任务。

通过以上的双重注意力网络架构,神经网络可以更有效地利用图像中的全局和局部信息,从而在各种计算机视觉任务中取得更好的性能。

2. DoubleAttention代码实现

2.1 将DoubleAttention添加到YOLOv8中

from torch import nn
import torch
from torch.autograd import Variable
import torch.nn.functional as F


class DoubleAttentionLayer(nn.Module):
    """
    Implementation of Double Attention Network. NIPS 2018
    """

    def __init__(self, in_channels: int, c_m: int, c_n: int, reconstruct=False):
        """
        Parameters
        ----------
        in_channels
        c_m
        c_n
        reconstruct: `bool` whether to re-construct output to have shape (B, in_channels, L, R)
        """
        super(DoubleAttentionLayer, self).__init__()
        self.c_m = c_m
        self.c_n = c_n
        self.in_channels = in_channels
        self.reconstruct = reconstruct
        self.convA = nn.Conv2d(in_channels, c_m, kernel_size=1)
        self.convB = nn.Conv2d(in_channels, c_n, kernel_size=1)
        self.convV = nn.Conv2d(in_channels, c_n, kernel_size=1)
        if self.reconstruct:
            self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1)

    def forward(self, x: torch.Tensor):
        """
        Parameters
        ----------
        x: `torch.Tensor` of shape (B, C, H, W)
        Returns
        -------
        """
        batch_size, c, h, w = x.size()
        assert c == self.in_channels, 'input channel not equal!'
        A = self.convA(x)  # (B, c_m, h, w) because kernel size is 1

        B = self.convB(x)  # (B, c_n, h, w)
        V = self.convV(x)  # (B, c_n, h, w)

        tmpA = A.view(batch_size, self.c_m, h * w)

        attention_maps = B.view(batch_size, self.c_n, h * w)
        attention_vectors = V.view(batch_size, self.c_n, h * w)

完整代码:YOLOv8改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附代码+小白必备】——点击即可跳转

双重注意力网络的主要过程涉及以下几个关键步骤:

输入图像的特征提取: 首先,输入的图像经过一个预训练的卷积神经网络(CNN)模型,例如ResNet、VGG等,以提取图像的特征。这些特征通常是一个高维度的张量,表示了图像在不同层次上的抽象特征信息。

全局注意力模块: 对于提取的图像特征,首先通过全局注意力模块进行处理。这个模块通常包括以下几个步骤:

使用全局池化操作(如全局平均池化)将特征图进行降维,得到全局上下文信息。

将降维后的全局特征通过一个全连接网络(FCN)进行处理,以学习全局信息的表示。

使用激活函数(如ReLU)来增加网络的非线性表示能力。

局部注意力模块: 接下来,提取的特征经过局部注意力模块的处理。这个模块主要负责捕获图像中的局部信息,并结合全局信息进行处理。其主要步骤包括:

将特征图分成不同的区域或者使用卷积操作来提取局部特征。

对每个局部特征使用注意力机制,计算其与全局信息的相关程度,以得到局部的重要性权重。

使用得到的权重对局部特征进行加权合并,以得到最终的局部表示。

特征融合: 全局和局部模块得到的特征需要被合并起来以供最终任务使用。通常的融合方式包括简单的连接、加权求和或者其他组合方式。这种特征融合能够让网络充分利用全局和局部信息,从而提高任务性能。

任务特定的输出: 最后,融合后的特征被送入一个或多个任务特定的神经网络层,例如全连接层或者卷积层,以完成具体的任务。这个任务可以是图像分类、目标检测、语义分割等。

2.2 更改init.py文件

然后在下面的all中声明函数

2.3 在task.py中进行注册

2.4 添加yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
​
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
​
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, DoubleAttentionLayer, [128,1]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
​
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12

温馨提示:因为本文只是对yolov8n基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。或者指定某个模型即可

# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple

# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.5 执行程序

from ultralytics import YOLO

# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_DANet.yaml')  # build from YAML and transfer weights

# Train the model
model.train(device = [3], batch=16)

建议大家写绝对路径,确保一定能找到

🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

完整代码: YOLOv8改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附代码+小白必备】——点击即可跳转

提取码:9wye

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8nGFLOPs

改进后的GFLOPs

5. 进阶

你能在不同的位置添加双重注意力机制吗?这非常有趣,快去试试吧

6. 总结

双重注意力网络是一种用于计算机视觉任务的神经网络架构,旨在通过注意力机制有效地捕获图像中的全局和局部信息,从而提高任务性能。该网络引入了两个关键的注意力模块,分别用于全局和局部信息的关注,全局模块通过全局池化操作学习图像的整体语义结构,而局部模块则专注于提取图像的局部特征并通过局部感知机制选择最相关的信息。这两个模块学习到的特征最终被融合起来以供任务使用,通常通过连接或加权求和的方式进行特征融合。双重注意力网络通过端到端的训练和优化,使用适当的损失函数和正则化技术来提高模型的泛化能力和训练稳定性。这种架构使得神经网络能够更全面地利用图像中的全局和局部信息,从而在各种计算机视觉任务中取得更好的性能表现。

相关文章
|
6月前
|
机器学习/深度学习 Java 网络架构
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
341 0
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
92 10
|
15天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
4月前
|
机器学习/深度学习 图计算 计算机视觉
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
YOLO目标检测专栏介绍了SimAM,一种无参数的CNN注意力模块,基于神经科学理论优化能量函数,提升模型表现。SimAM通过计算3D注意力权重增强特征表示,无需额外参数。文章提供论文链接、Pytorch实现代码及详细配置,展示了如何在目标检测任务中应用该模块。
|
5月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 注意力机制 | 用于增强小目标感受野的RFEM
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】Polarized Self-Attention: 极化自注意力,双重注意力机制
YOLOv10引入了极化自注意(PSA)块,结合通道和空间注意力,降低信息损失。PSA通过极化过滤保持高分辨率,并用增强处理非线性分布。在2D姿态估计和分割任务上提升1-2点精度,相比基线提升2-4点。代码示例展示了PSA模块如何集成到模型中。更多配置详情见相关链接。
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】CoordAttention: 用于移动端的高效坐标注意力机制
YOLOv10专栏探讨了将位置信息融入通道注意力的创新方法,提出“坐标注意力”机制,改善移动网络性能。该机制通过两个1D特征编码捕捉空间依赖并保持位置细节,生成增强对象表示的注意力图。简单易整合到现有网络如MobileNet,几乎无额外计算成本,且在ImageNet及目标检测等任务中表现优越。实现代码展示了CoordAtt模块的工作流程。更多详情和配置见链接。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
YOLOv5改进 | 注意力机制 | 添加三重注意力机制 TripletAttention【完整代码】
本文介绍了三重注意力机制在YOLOv5目标检测中的应用,这是一种轻量级方法,通过三分支结构捕获跨维度交互来计算注意力权重,几乎不增加计算开销。文章详细阐述了三重注意力的原理,包括全局、组间和组内三个层次的注意力计算,并提供了将TripletAttention模块添加到YOLOv5网络的教程。作者提供了代码实现和yaml配置文件的修改指导,以及在训练脚本中设置配置文件路径的步骤。完整代码附在文章末尾,适合初学者实践。此外,文章还鼓励读者探索在不同位置添加三重注意力以进一步优化模型性能。
|
5月前
|
机器学习/深度学习 计算机视觉
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练

热门文章

最新文章