【Hive SQL 每日一题】分析电商平台的用户行为和订单数据

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 作为一名数据分析师,你需要分析电商平台的用户行为和订单数据。你有三张表:`users`(用户信息),`orders`(订单信息)和`order_items`(订单商品信息)。任务包括计算用户总订单金额和数量,按月统计订单,找出最常购买的商品,找到平均每月最高订单金额和数量的用户,以及分析高消费用户群体的年龄和性别分布。通过SQL查询,你可以实现这些分析,例如使用`GROUP BY`、`JOIN`和窗口函数来排序和排名。

需求描述

假设你是一位数据分析师,负责分析某电商平台的用户行为和订单数据,平台上有多个用户,用户可以在不同的日期下单,每个订单包含多个商品。请你完成相关业务分析,帮助平台优化运营策略和用户体验。

数据准备

我们有三张表,表的字段信息如下:

users

记录用户的信息

字段名 字段类型 备注
user_id int 用户ID
name string 用户姓名
age int 用户年龄
gender string 用户性别
register_date string 注册日期

示例数据:

user_id name age gender register_date
1 'Alice' 23 'F' '2023-01-01'
2 'Bob' 22 'M' '2023-02-01'
3 'Cathy' 24 'F' '2023-03-01'
4 'David' 23 'M' '2023-04-01'
5 'Eve' 25 'F' '2023-05-01'

orders

记录订单的信息

字段名 字段类型 备注
order_id int 订单ID
user_id int 用户ID
order_date string 订单日期
amount double 订单金额

示例数据:

order_id user_id order_date amount
101 1 '2024-01-01' 100.0
102 1 '2024-01-02' 150.0
103 2 '2024-01-03' 200.0
104 3 '2024-01-04' 50.0
105 4 '2024-01-05' 300.0
106 5 '2024-01-06' 250.0

order_items

记录订单中商品的信息

字段名 字段类型 备注
order_item_id int 订单项ID
order_id int 订单ID
product_id int 商品ID
quantity int 商品数量
price double 商品单价

示例数据:

order_item_id order_id product_id quantity price
1001 101 1 1 50.0
1002 101 2 1 50.0
1003 102 3 3 50.0
1004 103 4 2 100.0
1005 104 5 1 50.0
1006 105 6 2 150.0
1007 106 7 5 50.0

数据集

-- 创建用户表
CREATE TABLE users (
    user_id INT,
    name STRING,
    age INT,
    gender STRING,
    register_date STRING
);

-- 插入用户数据
INSERT INTO users VALUES
(1, 'Alice', 23, 'F', '2023-01-01'),
(2, 'Bob', 22, 'M', '2023-02-01'),
(3, 'Cathy', 24, 'F', '2023-03-01'),
(4, 'David', 23, 'M', '2023-04-01'),
(5, 'Eve', 25, 'F', '2023-05-01'),
(6, 'Frank', 28, 'M', '2023-06-01'),
(7, 'Grace', 27, 'F', '2023-07-01'),
(8, 'Hank', 26, 'M', '2023-08-01'),
(9, 'Ivy', 29, 'F', '2023-09-01'),
(10, 'Jack', 30, 'M', '2023-10-01');

-- 创建订单表
CREATE TABLE orders (
    order_id INT,
    user_id INT,
    order_date STRING,
    amount DOUBLE
);

-- 插入订单数据
INSERT INTO orders VALUES
(101, 1, '2024-01-01', 100.0),
(102, 1, '2024-01-02', 150.0),
(103, 2, '2024-01-03', 200.0),
(104, 3, '2024-01-04', 50.0),
(105, 4, '2024-01-05', 300.0),
(106, 5, '2024-01-06', 250.0),
(107, 6, '2024-01-07', 100.0),
(108, 7, '2024-01-08', 150.0),
(109, 8, '2024-01-09', 200.0),
(110, 9, '2024-01-10', 50.0),
(111, 10, '2024-01-11', 300.0),
(112, 1, '2024-01-12', 100.0),
(113, 2, '2024-01-13', 150.0),
(114, 3, '2024-01-14', 200.0),
(115, 4, '2024-01-15', 50.0),
(116, 5, '2024-01-16', 300.0),
(117, 6, '2024-01-17', 250.0),
(118, 7, '2024-01-18', 100.0),
(119, 8, '2024-01-19', 150.0),
(120, 9, '2024-01-20', 200.0);

-- 创建订单项表
CREATE TABLE order_items (
    order_item_id INT,
    order_id INT,
    product_id INT,
    quantity INT,
    price DOUBLE
);

-- 插入订单项数据
INSERT INTO order_items VALUES
(1001, 101, 1, 1, 50.0),
(1002, 101, 2, 1, 50.0),
(1003, 102, 3, 3, 50.0),
(1004, 103, 4, 2, 100.0),
(1005, 104, 5, 1, 50.0),
(1006, 105, 6, 2, 150.0),
(1007, 106, 7, 5, 50.0),
(1008, 107, 1, 2, 50.0),
(1009, 108, 2, 3, 50.0),
(1010, 109, 3, 1, 50.0),
(1011, 110, 4, 2, 100.0),
(1012, 111, 5, 1, 50.0),
(1013, 112, 6, 2, 150.0),
(1014, 113, 7, 5, 50.0),
(1015, 114, 1, 2, 50.0),
(1016, 115, 2, 3, 50.0),
(1017, 116, 3, 1, 50.0),
(1018, 117, 4, 2, 100.0),
(1019, 118, 5, 1, 50.0),
(1020, 119, 6, 2, 150.0),
(1021, 120, 7, 5, 50.0);

需求分析与实现

1.计算每个用户的总订单金额和订单数量,并根据总订单金额对用户进行排名

select
    user_id,
    total_amount,
    total_cnt,
    rank() over(order by total_amount desc) rk
from
    (select
        user_id,
        sum(amount) total_amount,
        count(order_id) total_cnt
    from
        orders
    group by
        user_id)t1;

image.png

解题思路

  1. 按用户ID进行分组,统计每个用户的总订单金额和订单数量;
  2. 使用 RANK() 窗口函数对用户进行排名。

2.按月统计每个用户的订单总金额和订单数量

select
    user_id,
    date_format(order_date,"yyyy-MM") order_month,
    sum(amount) total_amount,
    count(order_id) total_cnt
from
    orders
group by
    user_id,date_format(order_date,"yyyy-MM");

image.png

解题思路

  1. 使用 DATE_FORMAT() 函数按月提取订单日期;
  2. 按用户ID和月份进行分组,统计每个用户每月的订单总金额和订单数量。

3.分析每个用户最常购买的商品,并计算该商品的总购买次数和总金额

select
    user_id,
    product_id,
    total_amount,
    total_cnt
from
    (select
        user_id,
        product_id,
        total_amount,
        total_cnt,
        row_number() over(partition by user_id order by total_cnt desc) rn
    from
        (select
            user_id,
            product_id,
            sum(amount) total_amount,
            count(product_id) total_cnt
        from
            orders o
        join
            order_items oi
        on
            o.order_id = oi.order_id
        group by
            user_id,product_id)t1 )t2
where
    rn = 1;

image.png

解题思路

  1. 分组统计每个用户购买商品的次数和总金额;
  2. 使用 ROW_NUMBER() 窗口函数对每个用户购买的商品进行排序;
  3. 过滤出购买次数最多的商品。

4.分别找出平均每月订单金额最高与订单数量最高的用户

select
    user_id,
    order_month,
    avg_amount,
    order_cnt
from
    (select
        user_id,
        order_month,
        avg_amount,
        order_cnt,
        rank() over(order by avg_amount desc) rk_amount,
        rank() over(order by order_cnt desc) rk_cnt
    from
        (select
            user_id,
            date_format(order_date,"yyyy-MM") order_month,
            cast(avg(amount) as decimal(5,2)) avg_amount,
            count(order_id) order_cnt
        from
            orders
        group by
            user_id,
            date_format(order_date,"yyyy-MM"))t1 )t2
where
    rk_amount = 1 or rk_cnt = 1;

image.png

解题思路

  1. 统计每个用户每月的平均订单金额和订单数量;

  2. 排序并取出平均每月订单金额和订单数量最高的两个用户。

5.找出订单金额最高的前10名用户,并分析这些用户的年龄和性别分布

select
    u.user_id,
    total_amount,
    u.age,
    u.gender
from
    (select
        user_id,
        sum(amount) total_amount
    from
        orders
    group by
        user_id) o
join
    users u
on
    o.user_id = u.user_id
order by
    total_amount desc
limit
    10;

image.png

解题思路

  1. 分组统计每个用户的总订单金额;
  2. 联合 users 表,获取用户的年龄和性别信息;
  3. 排序并取出总订单金额最高的前10名用户。

6.找出在过去一年内注册的用户中,订单金额最高的前5名用户

select
    u.user_id,
    sum(amount) total_amount
from
    (select
        user_id
    from
        users
    where
        register_date >= date_sub(current_date(),365) )u
join
    orders o
on
    o.user_id = u.user_id
group by
    u.user_id
order by
    total_amount desc
limit
    5;

image.png

解题思路

  1. 筛选出过去一年内注册的用户;
  2. 联合 orders 表,统计这些用户的总订单金额;
  3. 通过排序获取出前 5 名用户,如果想要精准获取允许重复,则可以使用 rank 或者 row_number 进行窗口排序后过滤获取前 5
相关文章
|
1月前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
2月前
|
SQL 移动开发 Oracle
SQL语句实现查询连续六天数据的方法与技巧
在数据库查询中,有时需要筛选出符合特定时间连续性条件的数据记录
|
2月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
2月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
2月前
|
SQL 监控 数据处理
SQL数据库数据修改操作详解
数据库是现代信息系统的重要组成部分,其中SQL(StructuredQueryLanguage)是管理和处理数据库的重要工具之一。在日常的业务运营过程中,数据的准确性和及时性对企业来说至关重要,这就需要掌握如何在数据库中正确地进行数据修改操作。本文将详细介绍在SQL数据库中如何修改数据,帮助读者更好
399 4
|
2月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
53 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
101 0
|
5月前
|
SQL JSON 数据库
influxdb 端点使用http进行sql查询,写数据
influxdb 端点使用http进行sql查询,写数据
284 0
|
2月前
|
SQL
使用SQL进行集合查询和数据维护
使用SQL进行集合查询和数据维护
45 0
|
4月前
|
SQL 存储 分布式计算