基于Python的性能优化(线程、协程、进程)

简介: 一、多线程在CPU不密集、IO密集的任务下,多线程可以一定程度的提升运行效率。

一、多线程

在CPU不密集、IO密集的任务下,多线程可以一定程度的提升运行效率。

import threading
import time
import requests

def fetch_url(url: str)->None:
    '''根据地址发起请求,获取响应
    - url: 请求地址'''
    response = requests.get(url)
    print(f"{url}: {response.status_code}")

def fetch_urls_sequential(urls:list)->None:
    start_time = time.time()
    for url in urls:
        fetch_url(url)
    end_time = time.time()
    print(f"使用单线程时间为: {end_time - start_time} 秒\n")

def fetch_urls_concurrent(urls:list)->None:
    start_time = time.time()
    threads = []
    for url in urls:
        thread = threading.Thread(target=fetch_url, args=(url,))
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()
    end_time = time.time()
    print(f"使用多线程时间为: {end_time - start_time} 秒")

if __name__ == "__main__":
    urls = ["http://www.example.com"]*10
    fetch_urls_sequential(urls)
    fetch_urls_concurrent(urls)


www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

使用单线程时间为: 10.178432703018188 秒

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

使用多线程时间为: 0.5794060230255127 秒


可以看到在IO密集型任务时,排除极端情况,使用多线程可以很大的提升程序的性能。例如在这个例子中,响应时间就相差了8倍多。


虽然在Python中有GIL保护机制,但是依然需要注意线程安全。例如(共享数据、共享设备、非原子性操作等)。可以使用锁机制、信号机制、队列、管道等等。


二、协程

协程也叫轻量级线程,协程是一种在单一线程内实现并发编程的技术。它们允许函数在执行过程中暂停,并在稍后恢复,从而使得多个任务能够交替执行,而不需要多个操作系统线程的开销。协程通过让出控制权来暂停执行,等待其他协程运行,然后在适当的时候恢复执行。

区别 线程 协程
上下文切换 线程上下文切换由操作系统决定,消耗更大 协程的上下文切换由用户自己决定,消耗更小
并发 线程是抢占式的,操作系统可以随时中断线程调度了一个线程 协程是协程式的,需要主动让出控制权时,才会进行任务切换
开销 创建线程和销毁线程,造成很大的开销 基于单线程的,并且协程是轻量级的,不会消耗大量资源。


协程的优势在于能够更高效地利用系统资源,在执行多个任务时能够充分利用CPU的性能。相比之下,并发执行的多个协程可以在单个线程内非阻塞地交替执行,从而减少了线程切换和上下文切换的开销,提高了整体的执行效率。


所以协程本身并不会直接提升单个任务的运行时间,但是,如果一个任务可以分解为多个步骤,并且这些步骤之间存在依赖关系,那么使用协程来执行这些步骤会更快。因为在等待I/O操作或其他异步操作完成时,协程可以让出CPU控制权,允许其他协程继续执行,从而最大程度地减少了等待时间。

例如从网站下载页面内容,并且计算页面内容。这就是单任务多步骤,这种情况就可以体现出协程的优势(性能、运行时间都会提升)。

import asyncio
import threading
import aiohttp
import time
import requests

async def fetch_page(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.text()
        
async def compute_length(url):
    page = await fetch_page(url)
    return len(page)

async def async_main():
    urls = ["http://www.example.com"]*10
    tasks = [compute_length(url) for url in urls]
    results = await asyncio.gather(*tasks)
    print("内容长度为:", results)

def thread_fetch_page(url):
    response = requests.get(url)
    return response.text
def thread_compute_length(url):
    page = thread_fetch_page(url)
    return len(page)
def thread_main():
    urls = ["http://www.example.com"]*10    
    threads = []
    results = []
    start_time = time.time()
    for url in urls:
        thread = threading.Thread(target=lambda u: results.append(thread_compute_length(u)), args=(url,))
        threads.append(thread)
        thread.start()
    for thread in threads:
        thread.join()
    end_time = time.time()
    print("内容长度为:", results)
    print(f"使用多线程时间为: {end_time - start_time} 秒")    

if __name__ == "__main__":
    start_time = time.time()
    asyncio.run(async_main())
    end_time = time.time()
    print(f"使用协程时间为: {end_time - start_time} 秒")
    thread_main()


内容长度为: [1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256]

使用协程时间为: 0.5775842666625977 秒

内容长度为: [1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256]

使用多线程时间为: 5.595600128173828 秒


可以看到这里的协程的运行时间提升了很多,因为是单任务多步骤,类似于流水线的方式,所以协程的速度会快很多。并且这里使用协程是单线程的,开销更小;而多线程这里使用了10个线程,开销更大。


三、多进程

如果任务主要由 CPU 运算组成(CPU密集型任务),而不涉及太多的 I/O 操作,那么多进程通常比多线程更适合,因为多进程能够利用多核处理器的全部性能,每个进程独立运行在自己的地址空间中,避开了 GIL 的限制。


例如大规模的计算,这种耗时的计算也是CPU密集型任务,使用多进程能明显的提升性能。


这里举例计算大规模积分

import multiprocessing
import threading
import numpy as np
import time

def integrate(f, a, b, N):
    """使用梯形法则计算f在区间[a, b]上的积分,N为分割数"""
    x = np.linspace(a, b, N)
    y = f(x)
    dx = (b - a) / (N - 1)
    return np.trapz(y, dx=dx)

def f(x):
    '''计算积分'''
    return np.sin(x) * np.exp(-x)

def integrate_range(start, end, result, index):
    result[index] = integrate(f, start, end, 100000000) 

def thread_main():
    result = [None] * 4
    threads = []
    ranges = [(0, 5), (5, 10), (10, 15), (15, 20)]  

    start_time = time.time()

    for i, (start, end) in enumerate(ranges):
        thread = threading.Thread(target=integrate_range, args=(start, end, result, i))
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()

    end_time = time.time()
    print(f"多线程使用时间为: {end_time - start_time} 秒")
    print(f"积分结果: {result}\n")
def multiprocess_main():
    manager = multiprocessing.Manager()
    result = manager.list([None] * 4)
    processes = []
    ranges = [(0, 5), (5, 10), (10, 15), (15, 20)]  
    start_time = time.time()

    for i, (start, end) in enumerate(ranges):
        process = multiprocessing.Process(target=integrate_range, args=(start, end, result, i))
        processes.append(process)
        process.start()

    for process in processes:
        process.join()

    end_time = time.time()
    print(f"多进程使用时间为: {end_time - start_time} 秒")
    print(f"积分结果: {result}")

if __name__ == "__main__":
    thread_main()    
    multiprocess_main()

多线程使用时间为: 7.396134853363037 秒

积分结果: [0.5022749400837572, -0.0022435439294056455, -3.1379421486677834e-05, -1.809428816655182e-08]

多进程使用时间为: 4.97518515586853 秒

积分结果: [0.5022749400837572, -0.0022435439294056455, -3.1379421486677834e-05, -1.809428816655182e-08]


可以看到这里的区别还是很大的,如果数据量更大,那么进程的优势会更明显。因为如果计算的时间过快,那么线程可以很快的进行切换。所以在大规模计算时,才可以体现出进程的优势。


四、总结

特性 进程 线程 协程
创建开销 极小
切换开销 极小
内存共享 不共享 共享 共享
通信方式 管道、队列等 共享内存 直接调用
多核利用 受GIL影响
使用场景 CPU密集型任务 IO密集型任务 高并发IO密集型任务
复杂度 较高 较低 依赖异步编程。较高


1、进程(Process)

  • 定义:进程是操作系统分配资源和调度的基本单位。每个进程拥有独立的内存空间、文件描述符和其他资源。
  • 优点:
  • 独立性:进程之间相互独立,不会直接影响彼此的运行,崩溃一个进程不会影响其他进程。
  • 利用多核:能够充分利用多核 CPU 的优势,每个进程可以在不同的 CPU 核心上并行运行。
  • 缺点:
  • 开销大:进程创建和销毁的开销较大,包括内存空间、文件句柄等资源。
  • 通信复杂:进程间通信(IPC)比较复杂,常用的 IPC 机制包括管道、消息队列、共享内存等。
  • 使用场景:
  • CPU 密集型任务,计算量大且需要充分利用多核 CPU 性能。
  • 需要高可靠性的任务,进程隔离可以防止任务间相互影响。


2、线程(Thread)

  • 定义:线程是进程中的一个执行流,是 CPU 调度和执行的基本单位。线程共享进程的内存和资源。
  • 优点:
  • 轻量级:创建和销毁线程的开销较小,线程之间的上下文切换开销比进程小。
  • 共享内存:同一进程的线程共享内存和资源,数据交换和通信更方便。
  • 缺点:
  • GIL 限制:在 Python 中,由于全局解释器锁(GIL),多线程在同一时间只能有一个线程执行 Python 字节码,限制了多线程在 CPU 密集型任务中的性能提升。
  • 线程安全:共享数据时需要小心处理线程同步问题,避免数据竞争、死锁等问题。
  • 使用场景:
  • I/O 密集型任务,如文件读写、网络请求等,可以在等待 I/O 完成时切换线程,提升效率。
  • 任务之间需要频繁的数据共享和通信的场景。


3、协程(Coroutine)

  • 定义:协程是一种更轻量级的并发执行方式,协程在用户空间内实现切换,由程序自身控制,不依赖操作系统的调度。
  • 优点:
  • 极轻量:协程的创建和切换开销极小,适合大量并发任务。
  • 无锁编程:协程之间通常不需要锁机制,因为协程在同一个线程中执行,不存在多线程的竞争问题。
  • 高效利用 I/O 等待:协程特别适合 I/O 密集型任务,可以在 I/O 等待时切换到其他协程执行。
  • 缺点:
  • 单线程限制:协程在单线程中执行,无法利用多核 CPU 的优势。
  • 需要异步编程支持:需要语言和框架的异步支持,编写异步代码较为复杂。
  • 使用场景:
  • 高并发的 I/O 密集型任务,如大量的网络请求处理、Web 服务器等。
  • 需要大量并发但任务之间独立性较高的场景。
相关文章
|
5天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
34 20
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
96 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
消息中间件 调度
如何区分进程、线程和协程?看这篇就够了!
本课程主要探讨操作系统中的进程、线程和协程的区别。进程是资源分配的基本单位,具有独立性和隔离性;线程是CPU调度的基本单位,轻量且共享资源,适合并发执行;协程更轻量,由程序自身调度,适合I/O密集型任务。通过学习这些概念,可以更好地理解和应用它们,以实现最优的性能和资源利用。
63 11
|
3月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
3月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
47 0
|
3月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
119 0
|
3月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
8天前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
38 17
|
17天前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
50 26
|
2月前
|
安全 Java API
【JavaEE】多线程编程引入——认识Thread类
Thread类,Thread中的run方法,在编程中怎么调度多线程

热门文章

最新文章

推荐镜像

更多