小唐开始刷蓝桥(七)2014年第五届C/C++ B组蓝桥杯省赛真题

简介: 小唐开始刷蓝桥(七)2014年第五届C/C++ B组蓝桥杯省赛真题

前言

每天打代码,快乐每一天!!!

一、啤酒和饮料

题目描述:

啤酒每罐2.3元,饮料每罐1.9元。小明买了若干啤酒和饮料,一共花了82.3元。我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒。

分析分析:

对于这种题目,我最喜欢的就是暴力了,直接模拟运算

题目代码:

#include <stdio.h>
#include <math.h>
int main()
{
  for(int i=1;i<82.3/2.3;i++)
  {
    for(int j=i+1;j<82.3/1.9;j++)
    {
      if(fabs(i*2.3+j*1.9-82.3)<1e-6)
      {
        printf("%d %d",i,j);
      }
    }
  }
}

运行结果:

11

二、切面条

题目描述:

一根高筋拉面,中间切一刀,可以得到2根面条。

如果先对折1次,中间切一刀,可以得到3根面条。

如果连续对折2次,中间切一刀,可以得到5根面条。

那么,连续对折10次,中间切一刀,会得到多少面条呢?

分析分析:

这个其实就是我们找规律的题目,小唐是用递归写的喔,但是后来想一想,其实就是我们

2的多少次方+1

大意了

题目代码:

#include <stdio.h>
int fact(int n)
{
  if(n==0)
  return 2;
  else
  return 2*fact(n-1)-1;
}
int main()
{
  int n;
  scanf("%d",&n);
  printf("%d",fact(n));
  return 0;
}

运行结果:

1025

三、李白打酒

题目描述:

话说大诗人李白,一生好饮。幸好他从不开车。

一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:

无事街上走,提壶去打酒。

逢店加一倍,遇花喝一斗。

这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。

请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。

分析分析:

老递归人了,我们把酒,店,花看作我们的递归体,他们的初始值是2,5,10

店=0 退出

花=1 退出

酒=1 退出

(满足最后一次遇到的是花,他正好把酒喝光了)

题目代码:

#include <stdio.h>
int count=0;
void fact(int jiu,int dian,int hua)
{
  if(dian>0)
  {
  fact(jiu*2,dian-1,hua);
  }
  if(hua>0)
  {
  fact(jiu-1,dian,hua-1);
  }
  if(hua==1&&dian==0&&jiu==1)
  {
    count++;
    
  }
}
int main()
{
  int a=2;
  fact(2,5,10);
  printf("%d",count);
}

运行结果:

14

四、史丰收速算

题目描述:

史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!

速算的核心基础是:1位数乘以多位数的乘法。

其中,乘以7是最复杂的,就以它为例。

因为,1/7 是个循环小数:0.142857…,如果多位数超过 142857…,就要进1

同理,2/7, 3/7, … 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n

下面的程序模拟了史丰收速算法中乘以7的运算过程。

乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。

乘以 7 的进位规律是:

满 142857… 进1,

满 285714… 进2,

满 428571… 进3,

满 571428… 进4,

满 714285… 进5,

满 857142… 进6

请分析程序流程,填写划线部分缺少的代码。

//计算个位 
int ge_wei(int a)
{
  if(a % 2 == 0)
    return (a * 2) % 10;
  else
    return (a * 2 + 5) % 10;  
}
//计算进位 
int jin_wei(char* p)
{
  char* level[] = {
    "142857",
    "285714",
    "428571",
    "571428",
    "714285",
    "857142"
  };
  
  char buf[7];
  buf[6] = '\0';
  strncpy(buf,p,6);
  
  int i;
  for(i=5; i>=0; i--){
    int r = strcmp(level[i], buf);
    if(r<0) return i+1;
    while(r==0){
      p += 6;
      strncpy(buf,p,6);
      r = strcmp(level[i], buf);
      if(r<0) return i+1;
      ______________________________;  //填空
    }
  }
  
  return 0;
}
//多位数乘以7
void f(char* s) 
{
  int head = jin_wei(s);
  if(head > 0) printf("%d", head);
  
  char* p = s;
  while(*p){
    int a = (*p-'0');
    int x = (ge_wei(a) + jin_wei(p+1)) % 10;
    printf("%d",x);
    p++;
  }
  
  printf("\n");
}
int main()
{
  f("428571428571");
  f("34553834937543");    
  return 0;
}

分析分析:

其实这个题目他说的就是,看我们这一个数超过了多少,对于超过的数进行一个模拟运算

题目中的f()就是我们的一个汇总过程 个位+进位然后遍历一个个输出

而我们要写的代码在进位那里,我们就是依次去比较我们的那些值

如果后面的数字比这个六位数大,就说明多位数大于这个循环数,需要进1;如果后面的数字比这个数字小呢,就说明还没达到这个进位要求,进0即可。

最后一个的while是为了防止相同,如果相同,我们就往后面挪6位再次去比较,直到不相同

题目中的上一句也给了提示,既然有进位,那么也肯定有不进位的情况。

题目代码:

if(r>0) return i;

五、打印图形

题目描述:

小明在X星球的城堡中发现了如下图形和文字:

#define N 70
void f(char a[][N], int rank, int row, int col)
{
  if(rank==1){
    a[row][col] = '*';
    return;
  }
  
  int w = 1;
  int i;
  for(i=0; i<rank-1; i++) w *= 2;
  
  ____________________________________________;
  f(a, rank-1, row+w/2, col);
  f(a, rank-1, row+w/2, col+w);
}
int main()
{
  char a[N][N];
  int i,j;
  for(i=0;i<N;i++)
  for(j=0;j<N;j++) a[i][j] = ' ';
  
  f(a,6,0,0);
  
  for(i=0; i<N; i++){
    for(j=0; j<N; j++) printf("%c",a[i][j]);
    printf("\n");
  }
  
  return 0;
}

分析分析:

又是我们的递归呀

f(,,,,)

来吧,确定的是

f(a,rank-1,,)剩下的就是我们去试

题目代码:

f(a, rank-1, row, col+w/2);

六、奇怪的分式

题目描述:

上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:1/4 乘以 8/5 小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼! 对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢? 请写出所有不同算式的个数(包括题中举例的)。显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!

注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。

分析分析:

暴力,暴力,四个小小的for循环

题目代码:

#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
  int count=0;
  for(int a=1;a<10;a++)
  {
    for(int b=1;b<10;b++)
    {
      if(a!=b)
      for(int c=1;c<10;c++)
      {
        for(int d=1;d<10;d++)
        {
          if(c!=d)
          {
            if(fabs((a*c*1.0)/(b*d)-((a*10.0+c)/(b*10.0+d)))<1e-5)
            count++;
          }
        }
      }
    } 
  }
  cout<<count;
}

运行结果:

14

七、六角填数

题目描述:

如图【1.png】所示六角形中,填入1~12的数字。

使得每条直线上的数字之和都相同。

图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少?

分析分析:

嘿嘿,我们的全排列来了

不过在全排列之前,我们可以知道每一条他们相加的和是26喔!

因为我们一共只有6条线,我们所有的和是78(1到12)

但是注意我们每一个和都算了两遍,78*2/6=26

题目代码:

#include <iostream>
#include <algorithm>
using namespace std;
int a[9]={2,4,5,6,7,9,10,11,12};
int main()
{
  while(next_permutation(a,a+9))
  {
    if((8+a[0]+a[1]+a[2])==26)
    if((1+a[0]+a[3]+a[5])==26)
    if((1+a[1]+a[4]+a[8])==26)
    if((8+a[3]+a[6]+3)==26)
    if((3+a[2]+a[4]+a[7])==26)
    if((a[5]+a[6]+a[7]+a[8])==26)
    for(int i=0;i<9;i++)
    {
      cout<<"     "<<a[i];
    }
  }
}

运行结果:

10

八、蚂蚁感冒

题目描述:

长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。 每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。

【数据格式】

第一行输入一个整数n (1 < n < 50), 表示蚂蚁的总数。

接着的一行是n个用空格分开的整数 Xi (-100 < Xi < 100), Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数据代表的蚂蚁感冒了。

要求输出1个整数,表示最后感冒蚂蚁的数目。

分析分析:

这个话,我们主要就是去模拟

简单的来说,我们就是先按照绝对值来进行排列

看看,三只蚂蚁的情况

前面两个碰头

后面两个碰头

这个时候我们发现什么,最要我们的第一只蚂蚁在左边,那么只要是往右边走的蚂蚁都会被感染

蚂蚁B就相当于蚂蚁A的代言人,替他走在右边的路程。

题目代码:

#include<iostream> 
#include <cmath>
using namespace std;
int a[55];
int main()
{
    int n,i;
    scanf("%d",&n); 
    for(i=0; i<n; i++)
    {
        scanf("%d",&a[i]);
    }
    //判断是否同一方向 
    for(i=0; i<n-1; i++)
    {
        if(a[i] * a[i+1] < 0)
        break;
    }
    if(i == n-1)//如果最后的时候大家方向相同,就只有第一只蚂蚁感冒 
    {
        printf("1\n");
    }
    int sum = 1;
    for(i=1; i<n; i++)
    {
        if(abs(a[i]) < abs(a[0]) && a[i] > 0)//第一个坐标左侧,并且方向是右边的会感染
        {
            sum++;
        }
        if(abs(a[i]) > abs(a[0]) && a[i] < 0)//第一个坐标右侧,并且方向是左边的会感染
        {
            sum++;
        }
    }    
    printf("%d\n",sum);
    return 0;
}

运行结果:

【输入样式】
3
5 -2 8
【输出样式】
1
【输入样式】
5
-10 8 -20 12 25
【输出样式】
3

九、地宫取宝

题目描述:

X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。地宫的入口在左上角,出口在右下角。小明被带到地宫的入口,国王要求他只能向右或向下行走。走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。

【数据格式】

输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。

分析分析:

害,老递归了,本人太水了,这个参考了别人的代码,大家来看看他的吧

这个老哥的

题目代码:

#include <stdio.h>
#include <string.h>
#define N 1000000007
int n,m,k;
int map[50][50];
int vis[50][50][15][15];//vis数组中记录的是状态:xy代表坐标 拥有宝物数量 拥有宝物的最大值(这4个可以详尽唯一的描述没一种可能)
//  如   vis[3][4][5][6]=7 即当在map[3][4]且身上有5件宝物 宝物的最大值是6 到达终点有7种路径
int dfs(int x,int y,int num,int max)//当前位置   拥有宝物的数量 拥有的宝物的最大值
{
    if (vis[x][y][num][max+1]!=-1)//因为宝物的价值有可能为0,所以定义max时用最小值-1 。但这就导致无法作为下标使用,所以我们用max+1代表下标。实际上如果测试数据中宝物价值不可能为0,这时将所有的max+1中的1去掉也是可以的。
    {
        return vis[x][y][num][max+1];
    }//记忆化的记忆就指的是上面
    if(x==n&&y==m)
    {
        if(num==k)return vis[x][y][num][max+1]=1;//满足条件 当前点到目标有1种方案
        else if(num==k-1&&max<map[x][y])return vis[x][y][num][max+1]=1;//同样满足条件 当前点到目标有1种方案
        else return vis[x][y][num][max+1]=0;//不满足条件 当前点到目标有0种方案
    }
    long long s=0;
    if(x+1<=n)//可以向下走
    {
        if (max<map[x][y])   //可以去走当前宝物
        {
            s+=dfs(x+1,y,num+1,map[x][y]);
            s%=N; //每次都取余,这样可以避免是s值过大越界
        }
        s+=dfs(x+1,y,num,max);//未取走当前宝物
        s%=N;
    }
    if(y+1<=m)//可以向右走
    {
        if (max<map[x][y])
        {
            s+=dfs(x,y+1,num+1,map[x][y]);
            s%=N;
        }
        s+=dfs(x,y+1,num,max);
        s%=N;
    }
    return vis[x][y][num][max+1]=s%N;;
}
int main(int argc, char const *argv[])
{
    scanf("%d%d%d",&n,&m,&k);
    for (int i = 1; i<=n; i++)
    {
        for (int j = 1; j <=m; j++)
        {
            scanf("%d",&map[i][j]);
        }
    }//初始地宫
    memset(vis,-1,sizeof(vis));
    dfs(1,1,0,-1);
    printf("%d",vis[1][1][0][0]);
    return 0;
}

运行结果:

【输入样式】
2 2 2
1 2
2 1
【输出样式】
2
【输入样式】
2 3 2
1 2 3
2 1 5
【输出样式】
14

十、小朋友排队

题目描述:

n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。

分析分析:

嘿嘿,这个题目的话用的是树状数组,不好意思,我感觉我是一个fw呜呜呜呜呜,还有好多不会的地方

树形数组介绍

参考代码

题目代码:

#include<stdio.h> 
#include<string.h>
#define MAX 1000010
#define N 100010
int C1[MAX],C2[MAX],b[MAX];
int num[N];
long long total[N],ans;
int lowbit(int x)
{
  return x&(-x);
}
void add(int pos,int num,int *C)
{
  while(pos<=MAX)
  {
    C[pos]+=num;
    pos+=lowbit(pos);
  }
}
int Sum(int pos,int *C)
{
  int sum=0;
  while(pos>0)
  {
    sum+=C[pos];
    pos-=lowbit(pos);
  }
  return sum;
}
void init()
{
  total[0]=0;
  for(int i=1;i<=N;i++)
  {
    total[i]=total[i-1]+i;
  }
}
int main()
{
  int i;
  init();
  memset(C1,0,sizeof(C1));
  memset(C2,0,sizeof(C2));
  int n;
  scanf("%d",&n);
  for(i=0;i<n;i++)
  {
    scanf("%d",&num[i]);
    add(num[i]+1,1,C1);   
    b[i]=i-Sum(num[i],C1);
    b[i]=b[i]-(Sum(num[i]+1,C1)-Sum(num[i],C1)-1);
  }
  for(i=n-1;i>=0;i--)
  {
    add(num[i]+1,1,C2);
    b[i]=b[i]+Sum(num[i],C2);
    
  } 
  ans=0;
  for(i=0;i<n;i++)
  {
    ans+=total[b[i]];
  }
  printf("%lld\n",ans);   
  return 0;
 } 

运行结果:

【输入样式】
3
3 2 1
【输出样式】
9
相关文章
|
28天前
|
数据安全/隐私保护 C++
小唐开始刷蓝桥(九)2012年第三届C/C++ B组蓝桥杯省赛真题
小唐开始刷蓝桥(九)2012年第三届C/C++ B组蓝桥杯省赛真题
|
28天前
|
算法 测试技术 C++
小唐开始刷蓝桥(八)2013年第四届C/C++ B组蓝桥杯省赛真题
小唐开始刷蓝桥(八)2013年第四届C/C++ B组蓝桥杯省赛真题
|
28天前
|
算法 C++
小唐开始刷蓝桥(六)2015年第六届C/C++ B组蓝桥杯省赛真题
小唐开始刷蓝桥(六)2015年第六届C/C++ B组蓝桥杯省赛真题
|
1月前
|
人工智能 算法 Java
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-1005 数字游戏
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-1005 数字游戏
64 0
|
1月前
|
Java C语言 C++
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-1000 kAc给糖果你吃
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-1000 kAc给糖果你吃
49 0
|
1月前
|
算法 Java C语言
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-999 数的潜能
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-999 数的潜能
49 0
|
1月前
|
算法 Java C语言
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-997 粘木棍
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-997 粘木棍
58 0
|
1月前
|
机器学习/深度学习 算法 Java
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-996 车的放置
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-996 车的放置
53 0
|
1月前
|
人工智能 算法 Java
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-992 士兵杀敌(二)
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-992 士兵杀敌(二)
35 1
|
1月前
|
算法 Java C语言
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-986 藏匿的刺客
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-986 藏匿的刺客
52 0

热门文章

最新文章