【动态规划算法】蓝桥杯填充问题(C/C++)

简介: 【动态规划算法】蓝桥杯填充问题(C/C++)

动态规划(Dynamic Programming,简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常用于优化那些具有重叠子问题和最优子结构性质的问题。

动态规划的基本步骤:

1. 问题分解:将复杂的原问题分解为若干个相对简单的子问题。

2. 最优子结构:问题的最优解包含其子问题的最优解。

3. 状态定义:描述问题的状态,dp数组定义为几维,代表什么含义。

4. 状态转移方程:找出状态之间的关系,这是动态规划算法的核心,只要有了状态转移方程,那么动态规划就成功了一大半了。

5. 边界条件:确定初始状态或边界条件,一般确定dp[0]/dp[0][0],给一个初始值,还有就是确定它要更新到哪一个状态就完成了。

6. 计算顺序:确定各状态按照什么顺序进行计算,以保证在计算当前状态时,所需要的子状态已被计算。

7. 构造最优解:根据子问题的最优解,构造原问题的最优解。

动态规划的常见问题类型:

动态规划的问题在算法竞赛中非常多,特别是蓝桥杯,几乎每一年都需考,当需要学习蓝桥杯时,建议多去学习学习动态规划问题。在动态规划问题中,有的问题非常简单都是模板题,例如背包问题、LCS、LIS等等,但是也有比较难的题,例如数位DP、DP的优化问题、四边形不等理论等这种难题就需要根据自身量力而行了。比如四边形不等理论这个东西博主连听说过都没有,还是在书上看到的,学习动态规划关键就是多做题积累,去做完题总结,看它的DP是如何定义的,如何状态转移的,下面列举几个常见的DP问题。

1. 背包问题:包括0/1背包、完全背包、多重背包问题等。

2. 最长递增子序列:找出序列中最长的严格递增子序列。

3. 最短路径问题:在加权图中找到两点之间的最短路径。

4. 矩阵链乘问题:计算矩阵序列的乘积,并找出最优的乘法顺序。

5. 硬币找零问题:使用最少的硬币数量来凑成特定的金额。


动态规划是一种非常强大的算法,它的变化性很强,我们要根据题目实际情况进行选择行使用动态规划,定义的状态是什么,表示什么含义,状态如何转移。下面我们以第十四届蓝桥杯省赛大学C组(C/C++)填充这一题为例题,进行讲解动态规划。

原题链接:填充

有一个长度为 n 的 01 串,其中有一些位置标记为 ?,这些位置上可以任意填充 0 或者 1,请问如何填充这些位置使得这个 01 串中出现互不重叠01 子串最多,输出子串个数。

输入格式

输入一行包含一个字符串。

输出格式

输出一行包含一个整数表示答案。

数据范围

对于所有评测用例,1≤n≤10^6。

输入样例:

1110?0

输出样例:

2

样例解释:

如果在问号处填 0,则最多出现一个 00 和一个 11111000


解题思路:

主要利用动态规划思想,定义一个dp[i]表示遍历到第i个位置的最大字串个数。第i个位置可以由前一个位置转移,分下面三种情况:


1.如果当前位置为0,它前一位三种情况0,1,?,当前一位为0或?时可以凑成字串,dp[i]=dp[i-1]+1,否则无法凑成字串dp[i]=dp[i-1]。


2.如果当前位置为1,它前一位三种情况0,1,?,当前一位为1或?时可以凑成字串,dp[i]=dp[i-1]+1,否则无法凑成字串dp[i]=dp[i-1]。


3.如果当前位置为?,它前一位三种情况0,1,?,当前一位为0、1或?时可以凑成字串,dp[i]=dp[i-1]+1,否则无法凑成字串dp[i]=dp[i-1]。


我们每次把能够凑成字串的位置都标记为2,防止重复利用。


代码实现:

#include<iostream>
#include<cstring>
using namespace std;
const int N=1e6+5;
string s;
int res;
int dp[N];
int main(){
  cin>>s;
  for(int i=1;i<s.size();i++){
    if(s[i]=='0'){//第一种情况
      if(s[i-1]=='0'||s[i-1]=='?'){
        dp[i]=dp[i-1]+1;
        s[i]=s[i-1]='2';
      }
      dp[i]=max(dp[i],dp[i-1]);
    }
    if(s[i]=='1'){//第二种情况
      if(s[i-1]=='1'||s[i-1]=='?'){
        dp[i]=dp[i-1]+1;
        s[i]=s[i-1]='2';
      }
      dp[i]=max(dp[i],dp[i-1]);
    }
    if(s[i]=='?'){//第三种情况
      if(s[i-1]=='0'||s[i-1]=='1'||s[i-1]=='?'){
        dp[i]=dp[i-1]+1;
        s[i]=s[i-1]='2';
      }
      dp[i]=max(dp[i],dp[i-1]);
    }
  }
  cout<<dp[s.size()-1]<<endl;
  return 0;
}

DP问题只要能找到状态转移方程就基本解决了,博主感觉最难的还是状态的定义与描述。多做题积累经验,文章代码实现或者思路有错误的地方,请各位大佬指出,感激不尽*~*。


执笔至此,感触彼多,全文将至,落笔为终,感谢大家的支持。

目录
打赏
0
0
0
0
1
分享
相关文章
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
72 15
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
15天前
|
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
35 4
|
2月前
|
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
98 4
算法系列之动态规划
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
39 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
121 6
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
104 5
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
126 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等