YOLO的版本及进阶历史

简介: YOLO的版本及进阶历史

YOLO(You Only Look Once)系列算法是目标检测领域的重要进展,以其速度快和性能优异而著称。以下是YOLO系列的版本及进阶历史的概述:


1. YOLOv1:由Joseph Redmon等人在2016年提出,是YOLO系列的开山之作。它通过单次前向传播完成图像中所有目标的检测,将图像划分为网格,每个网格预测边界框和类别。YOLOv1在PASCAL VOC2007数据集上实现了63.4的mAP。


2. YOLOv2 (YOLO9000):在2016年提出,引入了锚点(anchor boxes)和批量归一化,提高了小目标的检测精度。同时,YOLOv2采用了全卷积的网络结构,并在高分辨率图像上进行了微调。


3. YOLOv3:于2018年发布,YOLOv3采用了多尺度特征提取,改进了网络结构,使用Darknet-53作为骨干网络,并且引入了特征金字塔网络(FPN)的概念,进一步提升了对不同尺度目标的检测能力。


4. YOLOv4:虽然Joseph Redmon离开了计算机视觉领域,但YOLOv4在2020年由Alexey Bochkovskiy等人发布。它通过实验多种技术,如CBN、PAN、SAM等,寻找到了训练策略和推理成本之间的最佳平衡点。


5. YOLOv5:在2020年6月由Glenn Jocher发布,是YOLOv4的后续版本,主要区别在于使用PyTorch而不是DarkNet进行开发,由Ultralytics维护。


6. YOLOv6:由美团视觉人工智能部在2022年发布,YOLOv6采用了无锚点的检测器,并对Backbone和Neck进行了重新设计,以提高GPU等硬件的效率。


7. YOLOv7:在2022年7月由YOLOv4和YOLOR的同一作者发布,提出了模型结构重参化和动态标签分配问题的优化,进一步减少了参数量和计算量。


8. YOLOv8:由Ultralytics在2023年1月发布,YOLOv8是无锚的,具有更快的NMS过程,提供了不同大小的模型选择,以适应不同的性能和精度需求。


9. YOLOv9:在2024年由原YOLOv7团队打造,提出了可编程梯度信息(PGI)的概念,并设计了基于梯度路径规划的通用高效层聚合网络(GELAN)。


YOLO系列算法的演进体现了目标检测领域对速度和准确性平衡的追求,以及对硬件适配和应用场景扩展的不断优化。每个版本的YOLO都在前一版本的基础上进行了改进和增强,以应对更复杂的目标检测任务。

相关文章
|
机器学习/深度学习 编解码 算法
【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)
【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)
2548 0
【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)
|
PyTorch Go 算法框架/工具
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
【YOLOv8 注意事项】 1. YOLOv8 的官方仓库和代码已上线,文档教程网址也刚刚更新。 2. YOLOv8 代码集成在 ultralytics 项目中,目前看不会再单独创建叫做 YOLOv8 的项目。 3. YOLOv8 即将有论文了!要知道 YOLOv5 自从 2020 年发布以来,一直是没有论文的。而 YOLOv8(YOLOv5团队)这次首次承认将先发布 arXiv 版本的论文(目前还在火速撰写中)。
2548 0
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
|
机器学习/深度学习 人工智能 监控
YOLO的前世今生以及来龙去脉的背景介绍
YOLO的前世今生以及来龙去脉的背景介绍
|
12月前
|
机器学习/深度学习 存储 算法
DeepSeek多智能体强化学习
多智能体强化学习(MARL)是强化学习的重要分支,专注于训练多个智能体在复杂环境中协同或竞争。与单智能体不同,MARL需考虑智能体间的交互与协作,更具挑战性。DeepSeek提供强大工具和API,助力高效构建和训练MARL模型。本文将详细介绍使用DeepSeek进行MARL的方法,并通过代码示例帮助读者掌握相关技巧。内容涵盖多智能体环境的构建、Q学习和DQN智能体的定义与训练,以及常见问题的解决方案。
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
22887 0
|
机器学习/深度学习 算法 PyTorch
YOLO的版本有哪些,以及功能差异?
YOLO的版本有哪些,以及功能差异?
|
11月前
|
供应链 算法 数据挖掘
课时14:工业大脑介绍
阿里云ET工业大脑以数据为驱动,融合算法模型和互联网技术,优化工业生产全流程。它通过数据分析、参数调节、故障预测、智能质检和供应链管理等手段,提升产品质量、生产效率及资源利用率,助力企业实现智能化转型,推动绿色工厂建设,成功应用于光伏、橡胶等行业,显著提高经济效益与环保水平。
368 0
|
自然语言处理 开发者 Python
Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的 HTML 内容。Markdown 的语法简洁明了、学习容易,而且功能比纯文本更强。
Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的 HTML 内容。Markdown 的语法简洁明了、学习容易,而且功能比纯文本更强。
|
机器学习/深度学习 算法 计算机视觉
5.2 单阶段目标检测模型YOLOv3
这篇文章详细介绍了单阶段目标检测模型YOLOv3的基本原理和网络结构,包括如何生成候选区域、锚框的设计、预测框的生成以及如何对这些候选区域进行标注,并通过卷积神经网络进行特征提取和预测。