MySQL怎样优化千万级数据

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介: MySQL在处理千万级数据时可能存在性能挑战。本文介绍了几个优化策略来改善查询效率

首先要声明的就是,千万级数据对于MySQL来说就是不太合理的一个存在。

优化MySQL千万级数据策略还是比较多的。

  • 分表分库
  • 创建中间表,汇总表
  • 修改为多个子查询

这里讨论的情况是在MySQL一张表的数据达到千万级别。表设计很烂,业务统计规则又不允许把sql拆成多个子查询。

在这样的情况下,开发者可以尝试通过优化SQL来达到查询的目的。

当MySQL一张表的数据达到千万级别,会出现一些特殊的情况。这里主要是讨论在比较极端的情况下SQL的优化策略。

先来个千万级数据

通过存储过程传递函数制造1000万条数据。

表结构如下:

sql

复制代码

CREATE TABLE `orders` (
  `order_id` int NOT NULL AUTO_INCREMENT,
  `user_id` int DEFAULT NULL,
  `order_date` date NOT NULL,
  `total_amount` decimal(10,2) NOT NULL,
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`) USING BTREE,
  KEY `idx_user_amount` (`user_id`,`total_amount`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

CREATE TABLE `users` (
  `user_id` int NOT NULL AUTO_INCREMENT,
  `username` varchar(50) COLLATE utf8mb4_general_ci NOT NULL,
  `email` varchar(100) COLLATE utf8mb4_general_ci NOT NULL,
  `created_at` timestamp NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`user_id`),
  KEY `idx_user_id` (`user_id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

造数据的存储过程如下。

用户数据:

sql

复制代码

-- 产生用户存储过程,1000个
CREATE DEFINER=`root`@`localhost` PROCEDURE `create_users`()
BEGIN
    DECLARE i INT DEFAULT 0;
    DECLARE total_users INT DEFAULT 1000; -- 调整用户数量
    DECLARE rnd_username VARCHAR(50);
    DECLARE rnd_email VARCHAR(100);

    WHILE i < total_users DO
        -- 生成随机用户名和邮箱
        SET rnd_username = CONCAT('User', FLOOR(1 + RAND() * 10000000)); -- 假设用户名唯一
        SET rnd_email = CONCAT(rnd_username, '@example.com'); -- 假设邮箱唯一
        -- 将数据插入用户表
        INSERT INTO users (username, email) VALUES (rnd_username, rnd_email);

        SET i = i + 1;
    END WHILE;
END

订单数据生成存储过程如下:

sql

复制代码

CREATE DEFINER=`root`@`localhost` PROCEDURE `generate_orders`()
BEGIN
    DECLARE i INT DEFAULT 0;
    DECLARE total_users INT DEFAULT 1000; -- 用户数量
    DECLARE total_orders_per_user INT DEFAULT 1000; -- 每个用户的订单数量
    DECLARE rnd_user_id INT;
    DECLARE rnd_order_date DATE;
    DECLARE rnd_total_amount DECIMAL(10, 2);
    DECLARE j INT DEFAULT 0;

    WHILE i < total_users DO
        -- 获取用户ID
        SELECT user_id INTO rnd_user_id FROM users LIMIT i, 1;

        WHILE j < total_orders_per_user DO
            -- 生成订单日期和总金额
            SET rnd_order_date = DATE_ADD('2020-01-01', INTERVAL FLOOR(RAND() * 1096) DAY); -- 2020-01-01和2022-12-31之间的随机日期
            SET rnd_total_amount = ROUND(RAND() * 1000, 2); -- 0到1000之间的随机总金额
            -- 将数据插入订单表
            INSERT INTO orders (user_id, order_date, total_amount) VALUES (rnd_user_id, rnd_order_date, rnd_total_amount);

            SET j = j + 1;
        END WHILE;
        SET j = 0;

        SET i = i + 1;
    END WHILE;
END

将users和orders的数据生成分开,这样可以通过多次调用orders存储过程多线程参数数据。

调用一次call create_users(),然后开15个窗口调用orders存储过程call generate_orders()

整个过程会产生1000个用户,15*1000*1000也就是1500万条订单数据。

原始SQL

这是一个很简单的sql,统计每个用户的订单总额。

在默认情况下,什么索引都没有创建,需要花费190+s的时间。

sql

复制代码

-- 第一个版本
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
group by a.user_id;

explain分析如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a ALL PRIMARY 1000 100.0 Using temporary
1 SIMPLE b ALL 13016086 100.0 Using where; Using join buffer (hash join)

可以看到什么索引也没使用,type为all,直接全表扫描。

用时191s。

第一次优化:普通索引

把查询条件用到的sql条件都创建索引。也就是where和join、sum涉及到的知道。

sql

复制代码

CREATE INDEX idx_orders_user_id ON orders (user_id);
CREATE INDEX idx_orders_total_amount ON orders (total_amount);
CREATE INDEX idx_users_user_id ON users (user_id);

查询sql仍然是第一个版本。

sql

复制代码

-- 第一个版本
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
group by a.user_id;

先看看expalin的结果:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a index PRIMARY,idx_users_user_id PRIMARY 4 1 100.0
1 SIMPLE b ref idx_orders_user_id idx_orders_user_id 5 test2.a.user_id 13003 100.0

type为index或者ref,全部走的索引。

查询结果却让人失望,这次用的时间更多,用了460+s。也就是说查询变慢了。

推测是由于mysql的回表机制导致查询变得更慢了。所以接下来继续优化索引。

第二次优化:覆盖索引

覆盖索引是指一个索引包含了查询所需的所有列,从而可以满足查询的要求,而不需要访问实际的数据行。

通常情况下,数据库查询需要根据索引定位到对应的数据行,然后再从数据行中获取所需的列值。

而当索引中包含了查询所需的所有列时,数据库引擎可以直接通过索引就能够满足查询的要求,无需访问实际的数据行,这样就可以提高查询性能。

这也是普通索引添加了还是查询慢的原因,因为普通索引命中了还是会去找主键,通过主键找到关联字段的值做过滤。

sql

复制代码

-- 先不删除普通索引
-- drop INDEX idx_orders_user_id ON orders;
-- drop INDEX idx_orders_total_amount ON orders;
CREATE INDEX idx_orders_total_amount_user_id ON orders (total_amount,user_id);
CREATE INDEX idx_orders_user_id_total_amount ON orders (user_id,total_amount);

1500万数据创建索引就花费了300+s。所以创建索引得适度。

查询sql还是第一个版本。

sql

复制代码

-- 第一个版本
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
group by a.user_id;

先看看expalin的结果:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a index PRIMARY,idx_users_user_id PRIMARY 4 1 100.0
1 SIMPLE b ref idx_orders_user_id,idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using index

可以看到orders表的type从index提升到了ref。

此时的查询时间为从460s+降低到10s了。

结果证明覆盖索引能提升查询速度。

问题就在于这次建的两个覆盖索引,只有 idx_orders_user_id_total_amount 降低了查询时间,而 idx_orders_total_amount_user_id没有。

这个和mysql的关键词执行顺序有一定关系(推测,没找到资料)。

mysql执行顺序如下:

shell

复制代码

from
on
join
where
group by
having
select
distinct
union (all)
order by
limit

可以看到在覆盖索引使用过程先是where,再是到select的sum函数。这也是 idx_orders_user_id_total_amount 索引的创建顺序。

sql

复制代码

drop INDEX idx_orders_user_id ON orders;
drop INDEX idx_orders_total_amount ON orders;
drop INDEX idx_orders_total_amount_user_id ON orders;

drop掉相关的多余索引可以发现执行查询时间没有变化,仍然为10s。

索引优化这块差不多就是通过覆盖索引来命中索引。

第三次优化:减少数据量

减少数据量在业务上来说就是移除不必要的数据,或者可以在架构设计这块做一些工作。

分表就是这个原则。

通过这个方式能把千万的数据量减少到百万甚至几十万的量。提升的查询速度是可以想象的。

sql

复制代码

-- 第三次优化:减少数据量
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
where a.user_id > 1033
group by a.user_id;

expain结果如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a range PRIMARY,idx_users_user_id PRIMARY 4 685 100.0 Using where
1 SIMPLE b ref idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using index

可以看到users表的type为range。能过滤一部分数据量。

查询时间从10s降低到7s,减少数据量证明有效。

第四次优化:小表驱动大表

在 MySQL 中,通常情况下,优化器会根据查询条件和表的大小选择合适的驱动表(即主导表)。

小表驱动大表是一种优化策略,它指的是在连接查询中,优先选择小表作为驱动表,以减少连接操作所需的内存和处理时间。

在第三次优化的结果上,可以尝试使用小表驱动大表优化策略。

sql

复制代码

-- 第三个版本,小标驱动大表  没啥效果
SELECT a.*,sum(b.total_amount) as total from users a
left join (select user_id,total_amount from orders c where c.user_id > 1033 ) b  on a.user_id = b.user_id
where a.user_id > 1033
group by a.user_id;

将left join的表修改为子查询,能提前过滤一部分数据量。

expain结果如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a range PRIMARY,idx_users_user_id PRIMARY 4 685 100.0 Using where
1 SIMPLE c ref idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using where; Using index

可以看到explain没什么变化。实际执行效果也没啥变化。

小表驱动大表在这里无效,但是可以结合具体的业务进行优化sql。这个策略是没问题的。

第五次优化:强制索引

当 MySQL 中的 IN 子句用于查询千万级数据时,如果未正确设计和使用索引,可能导致索引失效,从而影响查询性能。

通常情况下,MySQL 的优化器会根据查询条件选择最优的执行计划,包括选择合适的索引。然而,对于大数据量的 IN 子句查询,MySQL 可能无法有效使用索引,从而导致全表扫描或索引失效。

查询sql如下,由于in的数据量不是很稀疏,实际查询强制索引和普通索引效果一致

sql

复制代码

-- 第五个版本,强制索引 
SELECT a.*,sum(b.total_amount) as total from users a left join orders b force index (idx_orders_user_id_total_amount)  on a.user_id = b.user_id
where b.user_id in (1033,1034,1035,1036,1037,1038)
group by a.user_id;
-- 第五个版本,不走强制索引 
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
where b.user_id in (1033,1034,1035,1036,1037,1038)
group by a.user_id;

查询时间都是零点几秒。

笔者在实际业务中是遇到过这种场景的,业务sql更加复杂。这里由于临时创建的订单用户表没复现。

当你发现explain都是命中索引的,但是查询依然很慢。这个强制索引可以试试。

优化策略

  • 提前命中索引,小表驱动大表
  • 千万级数据in索引失效,进行强制索引
  • 使用覆盖索引解决回表问题

下次该怎么优化SQL

  • 数据接近千万级,需要分表,比如按照用户id取模分表。
  • 用汇总表代替子查询来命中索引,比如把小时表生成日表、月表汇总数据。
  • 关联字段冗余、直接放到一张表就是单表查询了。
  • 命中索引,空间换时间,这也是本文分析的场景。

关于命中索引核心点就是覆盖索引,再者是千万数据产生的特有场景需要走强制索引。

tips

explain结果type的含义

在 MySQL 的 EXPLAIN 查询结果中,type 字段表示了查询使用的访问类型,即查询执行过程中的访问方法。

根据不同的访问类型,MySQL 查询优化器将选择不同的执行计划。以下是 type 字段可能的取值及其含义:

  • system: 这是最好的情况,表示查询只返回一行结果。这通常是通过直接访问表的 PRIMARY KEY 或唯一索引来完成的。
  • const: 表示 MySQL 在查询中找到了常量值,这是在连接的第一个表中进行的。由于这是常量条件,MySQL 只会读取一次表中的一行数据。例如,通过主键访问一行数据。
  • eq_ref: 类似于 const,但在使用了索引的情况下。此类型的查询是通过某个唯一索引来访问表的,对于每个索引键值,表中只有一行匹配。常见于使用主键或唯一索引进行连接操作。
  • ref: 表示此查询使用了非唯一索引来查找值。返回的是所有匹配某个单独值的行。该类型一般出现在联接操作中,使用了非唯一索引或者索引前缀。
  • range: 表示查询使用了索引来进行范围检索,通常出现在带有范围条件的查询语句中,例如 BETWEENIN()>、<等。
  • index: 表示 MySQL 将扫描整个索引来找到所需的行。这通常是在没有合适的索引的情况下,MySQL 会选择使用这种访问类型。
  • all: 表示 MySQL 将扫描全表以找到所需的行,这是最差的情况。这种情况下,MySQL 将对表中的每一行执行完整的扫描。

通常来说,type 字段的排序从最好到最差依次是 systemconsteq_refrefrangeindexall,当然,实际情况取决于查询的具体情况、表结构和索引的使用情况。更好的查询性能通常对应着更好的 type 类型。

mysql的回表机制

在 MySQL 中,回表("ref" or "Bookmark Lookup" in English)是指在使用索引进行查询时,MySQL 首先通过索引找到满足条件的行的位置,然后再回到主表(或称为数据表)中查找完整的行数据的过程。

这个过程通常发生在某些查询中,特别是涉及到覆盖索引无法满足查询需求时。

当一个查询不能完全通过索引满足时,MySQL 就需要回到主表中查找更多的信息。这种情况通常出现在以下几种情况下:

  • 非覆盖索引查询: 如果查询需要返回主表中未包含在索引中的其他列的数据时,MySQL 就需要回到主表中查找这些额外的列数据。
  • 使用索引范围条件: 当查询中使用了范围条件(例如 BETWEEN>< 等),而索引只能定位到范围起始位置时,MySQL 需要回到主表中检查满足范围条件的完整行。
  • 使用了聚簇索引但需要查找的列不在索引中: 在使用了聚簇索引的表中,如果需要查询的列不在聚簇索引中,MySQL 需要回到主表中查找这些列的数据。

当 MySQL 需要执行回表操作时,会发生额外的磁盘访问,因为需要读取主表中的数据。这可能会导致性能下降,特别是在大型数据表中或者在高并发环境中。

为了尽量减少回表操作的发生,可以考虑以下几点:

  • 创建覆盖索引:确保查询所需的所有列都包含在索引中,从而避免回表操作。
  • 优化查询语句:尽量避免使用范围条件,或者确保所有的过滤条件都可以被索引完全匹配。
  • 考虑表设计:在设计数据库表结构时,可以考虑将常用的查询字段都包含在索引中,以减少回表操作的发生。



转载来源:https://juejin.cn/post/7360984753463803930


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
150 0
|
4月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
162 0
|
2月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
157 10
|
2月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
95 6
|
3月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
3月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
|
3月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
130 0
|
5月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
6月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
281 28

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多