实时计算 Flink版产品使用合集之使用Flink CDC SQL MongoDB Connector时,可以采取什么措施来提升数据消费速率

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:请教个问题,我想在flink消费kafka数据时,不对消费的数据进行解压缩操作有什么办法吗?


请教个问题,我想在flink消费kafka数据时,不对消费的数据进行解压缩操作有什么办法吗?我想使用这种方式来测试flink source的最大拉取速度


参考回答:

自己写一个反序列化器,里面不做任何处理,返回null就行


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573357


问题二:在flink1.17Application模式中 有没有办法同步获取任务执行结果后再退出客户端?


请教一下各位, 在flink1.17Application模式中 客户端执行 flink run-application -t yarn-application 跑批,有没有办法同步获取任务执行结果后再退出客户端试了 -sae 参数,好像没有用?


参考回答:

在 Apache Flink 1.17 中,flink run-application -t yarn-application 命令用于提交一个 Application 模式的作业到 YARN 集群。通常情况下,这个命令会异步地启动任务并立即返回控制台。

如果你想让客户端在获取任务执行结果后再退出,你可以尝试以下方法:

  1. 使用 flink listyarn application 命令
    在提交任务后,你可以通过运行 flink list 或者直接使用 Hadoop 的 yarn application 命令来查看应用的状态。这将帮助你了解作业是否成功运行以及其当前状态。
  2. 检查日志文件
    Flink 和 YARN 都会在本地磁盘或 HDFS 上生成日志文件。你可以通过查阅这些日志文件来获取更详细的信息,包括任务的执行情况和任何可能发生的错误。
  3. 编写自定义监控程序
    如果你需要更精确地监控任务执行状态,并且希望在特定条件满足时自动退出客户端,可以考虑编写一个简单的脚本或者应用程序,它可以通过 Flink REST API 或 YARN REST API 监控作业状态。
  4. 使用事件时间窗口
    如果你的批处理作业是基于事件时间窗口的,那么可以在最后设置一个足够长的时间窗口(例如几小时),以确保所有数据都被处理完。这样,当这个窗口触发时,你可以认为整个批处理过程已经完成。
  5. 设置合适的 checkpoint 和 savepoint
    使用适当的 checkpoint 和 savepoint 设置可以帮助你在任务失败时快速恢复。同时,你也可以利用它们来判断任务是否已经完成了预期的工作。
  6. 查询外部系统
    如果你的作业最终将结果写入了外部系统(如数据库、消息队列等),你可以通过查询这些系统的状态来判断作业是否已经正确地完成了它的任务。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573356


问题三:Flink这个什么处理?


Flink这个什么处理?请教下大佬Failed to execute goal org.apache.maven.plugins:maven-shade-plugin:3.3.0:shade (default) on project disp-flinkcep-pusale-warnning: Unable to parse configuration of mojo org.apache.maven.plugins:maven-shade-plugin:3.3.0:shade for parameter resource: Cannot find 'resource' in class org.apache.maven.plugins.shade.resource.ServicesResourceTransformer


参考回答:

这个错误信息表明你在使用 maven-shade-plugin 插件时遇到了问题。具体来说,它告诉你在解析配置文件中关于 resource 参数的设置时找不到对应的设置器(setter)、加法器(adder)或字段。

解决这个问题的方法通常有以下几种:

  1. 检查 Maven POM 文件
  • 确保你的 pom.xml 文件中定义了正确的插件和参数。确保你使用的是正确的 resource 参数名称,并且该参数是在正确的位置和上下文中使用的。
  • 如果你正在尝试使用某个特定的资源转换器,如 ServicesResourceTransformer,确保已正确引用并添加到 transformers 列表中。
<build>
  <plugins>
    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-shade-plugin</artifactId>
      <version>3.3.0</version>
      <executions>
        <execution>
          <phase>package</phase>
          <goals>
            <goal>shade</goal>
          </goals>
          <configuration>
            <!-- 注意这里可能需要根据实际情况调整 -->
            <transformers>
              <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
            </transformers>
            <!-- 其他配置项... -->
          </configuration>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>
  1. 更新依赖版本
  • 可能是由于不同版本的 maven-shade-plugin 插件与你使用的其他库之间存在兼容性问题。尝试升级或降级 maven-shade-plugin 的版本,看看是否可以解决问题。
  1. 清理和重新构建项目
  • 在进行上述修改后,确保清除项目的缓存和目标目录,然后重新构建项目。这有助于确保新的配置生效并且没有旧的配置文件残留。
  1. 查阅相关文档
  • 查阅 Apache Maven 和 maven-shade-plugin 的官方文档,以了解最新的配置要求和示例。同时,也可以查找社区论坛上的类似问题,看是否有其他人遇到过类似的问题并找到了解决方案。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573355


问题四:百问求答(3)Flink专场!回答问题赢行李箱等好礼


Flink SQL的并行度如何单独设置,比如单独设置sink的并行度与其他不一致


参考回答:

这里的"setParallelism"方法只是单独设置了Sink的并行度,并没有对程序的其他部分进行修改。如果您想对整个程序的并行度进行调整,可以参考文档:https://help.aliyun.com/zh/flink/getting-started/ingest-log-data-into-data-warehouses-in-real-time

---来自实时计算Flink版快速入门日志实时入仓快速入门文档


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573237


问题五:flink cdc sql mongo connector 如何提升消费速率


业务背景:有一批百亿级别的数据需要同步从mongo同步到doris,存量+增量都要同步,所以想使用CDC同步,但是发现速率太慢,目前QPS 2w,预计300亿要同步20天左右才能跑完。

UI上看到QPS在2万左右,并且source的并行度一直是1。请问如何提高source的并行度?以及并行度的提升是否有助于提升消费速率?

sql 的 source table 配置如下,这里在CDC文档中没有找到可以配置source并行度的地方。提高了拉数据的batch size。发现对source的QPS没有提升效果。

flink.conf文件中的默认并行度配置如下


参考回答:

CDC SQL Mongo Connector默认使用MongoDB的Change Streams来获取数据变化。要提高消费速率,您可以尝试以下方法:

提高并行度:您可以在Flink的CDC任务中设置`source.parallelism`参数来提高source的并行度。例如,您可以将并行度设置为`numTaskSlots`,这将使用Flink集群中的所有任务槽来处理数据。需要注意的是,提高并行度可能会增加资源消耗和数据竞争的风险,因此需要根据实际情况进行调整。
调整MongoDB连接器参数:您可以在Flink的MongoDB连接器中设置一些参数来优化消费速率,例如:
    `connector.class`:使用`MongoDBChangeEventSource`类来处理变更事件,而不是默认的`MongoDBBulkChangeEventSource`。这将使得连接器更高效地处理变更事件,从而提高消费速率。
    `mongo.batch.size`:设置批量大小,以减少与MongoDB的通信次数。根据您的网络和MongoDB集群的性能,可以尝试调整此参数以获得最佳效果。
    `mongo.max.document.size`:设置最大文档大小,以避免处理过大的文档。根据您的数据特点,可以尝试调整此参数以提高消费速率。
优化Flink任务配置:您还可以尝试调整Flink任务的配置,例如:
    `task.timeout`:设置任务超时时间,以便在任务长时间运行时自动终止。这将有助于避免因为长时间运行的任务而导致的资源浪费。
    `state.backend`:使用更高效的State Backend,例如`filesystem`或`rocksdb`,以提高任务


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573233



相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
6月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
967 43
|
6月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
419 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
10月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
947 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
存储 NoSQL MongoDB
【赵渝强老师】MongoDB写入数据的过程
在MongoDB数据更新时,WiredTiger存储引擎通过预写日志(Journal)机制先将更新写入日志文件,再通过检查点操作将日志中的操作刷新到数据文件,确保数据持久化和一致性。检查点定期创建,缩短恢复时间,并保证异常终止后可从上一个有效检查点恢复数据。视频讲解及图示详细说明了这一过程。
316 23
【赵渝强老师】MongoDB写入数据的过程
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2662 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
7月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
489 1
京东零售基于Flink的推荐系统智能数据体系
|
11月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
2961 45
|
11月前
|
消息中间件 关系型数据库 Kafka
阿里云基于 Flink CDC 的现代数据栈云上实践
阿里云基于 Flink CDC 的现代数据栈云上实践
211 1
|
11月前
|
存储 JSON NoSQL
微服务——MongoDB的数据模型
MongoDB采用文档(document)作为最小存储单位,类似关系型数据库中的行,使用BSON(Binary-JSON)格式存储数据。BSON是JSON的二进制扩展,支持内嵌文档和数组,新增了如Date、BinData等特殊数据类型,具有轻量、高效、可遍历的特点,适合非结构化与结构化数据存储。其灵活性高,但空间利用率略低。BSON数据类型包括string、integer、boolean等基本类型及date、object id等扩展类型。
291 0

热门文章

最新文章

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多