实时计算 Flink版产品使用合集之使用Flink CDC SQL MongoDB Connector时,可以采取什么措施来提升数据消费速率

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:请教个问题,我想在flink消费kafka数据时,不对消费的数据进行解压缩操作有什么办法吗?


请教个问题,我想在flink消费kafka数据时,不对消费的数据进行解压缩操作有什么办法吗?我想使用这种方式来测试flink source的最大拉取速度


参考回答:

自己写一个反序列化器,里面不做任何处理,返回null就行


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573357


问题二:在flink1.17Application模式中 有没有办法同步获取任务执行结果后再退出客户端?


请教一下各位, 在flink1.17Application模式中 客户端执行 flink run-application -t yarn-application 跑批,有没有办法同步获取任务执行结果后再退出客户端试了 -sae 参数,好像没有用?


参考回答:

在 Apache Flink 1.17 中,flink run-application -t yarn-application 命令用于提交一个 Application 模式的作业到 YARN 集群。通常情况下,这个命令会异步地启动任务并立即返回控制台。

如果你想让客户端在获取任务执行结果后再退出,你可以尝试以下方法:

  1. 使用 flink listyarn application 命令
    在提交任务后,你可以通过运行 flink list 或者直接使用 Hadoop 的 yarn application 命令来查看应用的状态。这将帮助你了解作业是否成功运行以及其当前状态。
  2. 检查日志文件
    Flink 和 YARN 都会在本地磁盘或 HDFS 上生成日志文件。你可以通过查阅这些日志文件来获取更详细的信息,包括任务的执行情况和任何可能发生的错误。
  3. 编写自定义监控程序
    如果你需要更精确地监控任务执行状态,并且希望在特定条件满足时自动退出客户端,可以考虑编写一个简单的脚本或者应用程序,它可以通过 Flink REST API 或 YARN REST API 监控作业状态。
  4. 使用事件时间窗口
    如果你的批处理作业是基于事件时间窗口的,那么可以在最后设置一个足够长的时间窗口(例如几小时),以确保所有数据都被处理完。这样,当这个窗口触发时,你可以认为整个批处理过程已经完成。
  5. 设置合适的 checkpoint 和 savepoint
    使用适当的 checkpoint 和 savepoint 设置可以帮助你在任务失败时快速恢复。同时,你也可以利用它们来判断任务是否已经完成了预期的工作。
  6. 查询外部系统
    如果你的作业最终将结果写入了外部系统(如数据库、消息队列等),你可以通过查询这些系统的状态来判断作业是否已经正确地完成了它的任务。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573356


问题三:Flink这个什么处理?


Flink这个什么处理?请教下大佬Failed to execute goal org.apache.maven.plugins:maven-shade-plugin:3.3.0:shade (default) on project disp-flinkcep-pusale-warnning: Unable to parse configuration of mojo org.apache.maven.plugins:maven-shade-plugin:3.3.0:shade for parameter resource: Cannot find 'resource' in class org.apache.maven.plugins.shade.resource.ServicesResourceTransformer


参考回答:

这个错误信息表明你在使用 maven-shade-plugin 插件时遇到了问题。具体来说,它告诉你在解析配置文件中关于 resource 参数的设置时找不到对应的设置器(setter)、加法器(adder)或字段。

解决这个问题的方法通常有以下几种:

  1. 检查 Maven POM 文件
  • 确保你的 pom.xml 文件中定义了正确的插件和参数。确保你使用的是正确的 resource 参数名称,并且该参数是在正确的位置和上下文中使用的。
  • 如果你正在尝试使用某个特定的资源转换器,如 ServicesResourceTransformer,确保已正确引用并添加到 transformers 列表中。
<build>
  <plugins>
    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-shade-plugin</artifactId>
      <version>3.3.0</version>
      <executions>
        <execution>
          <phase>package</phase>
          <goals>
            <goal>shade</goal>
          </goals>
          <configuration>
            <!-- 注意这里可能需要根据实际情况调整 -->
            <transformers>
              <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
            </transformers>
            <!-- 其他配置项... -->
          </configuration>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>
  1. 更新依赖版本
  • 可能是由于不同版本的 maven-shade-plugin 插件与你使用的其他库之间存在兼容性问题。尝试升级或降级 maven-shade-plugin 的版本,看看是否可以解决问题。
  1. 清理和重新构建项目
  • 在进行上述修改后,确保清除项目的缓存和目标目录,然后重新构建项目。这有助于确保新的配置生效并且没有旧的配置文件残留。
  1. 查阅相关文档
  • 查阅 Apache Maven 和 maven-shade-plugin 的官方文档,以了解最新的配置要求和示例。同时,也可以查找社区论坛上的类似问题,看是否有其他人遇到过类似的问题并找到了解决方案。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573355


问题四:百问求答(3)Flink专场!回答问题赢行李箱等好礼


Flink SQL的并行度如何单独设置,比如单独设置sink的并行度与其他不一致


参考回答:

这里的"setParallelism"方法只是单独设置了Sink的并行度,并没有对程序的其他部分进行修改。如果您想对整个程序的并行度进行调整,可以参考文档:https://help.aliyun.com/zh/flink/getting-started/ingest-log-data-into-data-warehouses-in-real-time

---来自实时计算Flink版快速入门日志实时入仓快速入门文档


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573237


问题五:flink cdc sql mongo connector 如何提升消费速率


业务背景:有一批百亿级别的数据需要同步从mongo同步到doris,存量+增量都要同步,所以想使用CDC同步,但是发现速率太慢,目前QPS 2w,预计300亿要同步20天左右才能跑完。

UI上看到QPS在2万左右,并且source的并行度一直是1。请问如何提高source的并行度?以及并行度的提升是否有助于提升消费速率?

sql 的 source table 配置如下,这里在CDC文档中没有找到可以配置source并行度的地方。提高了拉数据的batch size。发现对source的QPS没有提升效果。

flink.conf文件中的默认并行度配置如下


参考回答:

CDC SQL Mongo Connector默认使用MongoDB的Change Streams来获取数据变化。要提高消费速率,您可以尝试以下方法:

提高并行度:您可以在Flink的CDC任务中设置`source.parallelism`参数来提高source的并行度。例如,您可以将并行度设置为`numTaskSlots`,这将使用Flink集群中的所有任务槽来处理数据。需要注意的是,提高并行度可能会增加资源消耗和数据竞争的风险,因此需要根据实际情况进行调整。
调整MongoDB连接器参数:您可以在Flink的MongoDB连接器中设置一些参数来优化消费速率,例如:
    `connector.class`:使用`MongoDBChangeEventSource`类来处理变更事件,而不是默认的`MongoDBBulkChangeEventSource`。这将使得连接器更高效地处理变更事件,从而提高消费速率。
    `mongo.batch.size`:设置批量大小,以减少与MongoDB的通信次数。根据您的网络和MongoDB集群的性能,可以尝试调整此参数以获得最佳效果。
    `mongo.max.document.size`:设置最大文档大小,以避免处理过大的文档。根据您的数据特点,可以尝试调整此参数以提高消费速率。
优化Flink任务配置:您还可以尝试调整Flink任务的配置,例如:
    `task.timeout`:设置任务超时时间,以便在任务长时间运行时自动终止。这将有助于避免因为长时间运行的任务而导致的资源浪费。
    `state.backend`:使用更高效的State Backend,例如`filesystem`或`rocksdb`,以提高任务


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573233



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1077 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
24天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
142 56
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
44 2
|
消息中间件 SQL Java
Flink自定义Connector
Flink自定义Connector
481 0
|
7月前
|
消息中间件 Oracle 关系型数据库
实时计算 Flink版产品使用合集之如果想自定义connector和pipeline要如何入手
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 存储 NoSQL
Flink SQL 自定义 redis connector
一般情况下,我们不需要创建新的 connector,因为 Flink SQL 已经内置了丰富的 connector 供我们使用,但是在实际生产环境中我们的存储是多种多样的,所以原生的 connector 并不能满足所有用户的需求,这个时候就需要我们自定义 connector,这篇文章的重点就是介绍一下如何实现自定义 Flink SQL connector ? 先来看一下官网的一张 connector 架构图:
Flink SQL 自定义 redis connector
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
5月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
851 7
阿里云实时计算Flink在多行业的应用和实践
|
4月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版