第二章 HTTP请求方法、状态码详解与缓存机制解析

简介: 第二章 HTTP请求方法、状态码详解与缓存机制解析

1. 请求方法(GET、POST、PUT、DELETE等)及其应用场景

本质上只有get和post请求,其他都是post请求

1.1 GET

  • 定义:GET是HTTP中最常用的方法,用于从服务器获取资源。

特点

  • 请求参数通常放在URL的查询字符串中,即?key1=value1&key2=value2格式。
  • GET请求可被浏览器缓存,并且会被保存在浏览历史记录中。(不理解没关系,后面会单独说)
  • 2m的数据限制。
  • 不应有副作用,也就是说,它不应该改变服务器上的资源状态。
  • 应用场景
  • 获取静态页面内容。
  • 查询数据库以获取列表信息或详情信息。

1.2 POST

  • 定义:POST方法用于向指定资源提交数据,请求被包含在请求体中,可能引起服务器端资源的创建、更新或操作。
  • 特点
  • 数据不会显示在URL中,而是通过请求体传输,可以携带大量数据。
  • 可能会有副作用,比如新增用户信息、发表评论等操作。
  • 非幂等性:多次执行相同的POST请求可能会有不同的结果,例如每次提交都会创建一个新的资源实例。
  • 应用场景
  • 提交表单数据。
  • 创建新的资源,如添加一篇文章、上传文件等。

POST请求的请求体(Body)是用来承载客户端要发送给服务器的数据部分,根据不同的应用场景和内容类型(Content-Type),请求体的内容格式会有所不同。对于上传文件的情况,通常采用multipart/form-dataapplication/x-www-form-urlencodedapplication/json

multipart/form-data:这是最常见的文件上传方式,尤其在HTML表单中通过<input type="file">元素选择文件时,默认使用此Content-Type。请求体被划分为多个部分(parts),每个部分包含一个或多个字段及其对应的值,文件字段则包含了文件内容本身。每个部分都有自己的Header描述信息,例如:

--boundary_string
Content-Disposition: form-data; name="field1"

value1
--boundary_string
Content-Disposition: form-data; name="file"; filename="example.txt"
Content-Type: text/plain

... file contents here ...
--boundary_string--

在这个例子中,“boundary_string”是一个由服务器指定或者浏览器自动生成的分隔符,用于区分各个部分。文件字段通过Content-Disposition头部中的filename属性来标识上传文件的名字,并且其内容紧跟在头部后面。

application/x-www-form-urlencoded

尽管这种Content-Type也能上传少量数据,但不适合大文件或二进制文件的上传,因为这种方式下所有的键值对都会被编码为一串连续的字符序列,例如:

field1=value1&file=encoded_file_contents

对于文件内容,通常是不现实的将其编码成URL安全的形式并作为请求体的一部分。


在实际编程过程中,比如使用Python的requests库、JavaScript的Fetch API或XMLHttpRequest等工具,都需要正确设置Content-Type,并将文件内容以适当的方式添加到请求体中。例如,在requests库中,可以这样上传文件:

import requests

url = 'https://example.com/upload'
files = {'file': ('example.txt', open('path_to_your_file.txt', 'rb'))}
response = requests.post(url, files=files)

这里open('path_to_your_file.txt', 'rb')用来打开文件并以二进制读取模式准备上传,requests库会自动处理请求头和请求体的格式化工作。

在使用multipart/form-data格式上传文件时,除了基本的文件内容传输外,还可以携带其他非文件字段数据。例如,在一个表单中可能同时包含文本输入框和其他控件的数据,整个POST请求体将会包括这些额外信息:

--boundary_string
Content-Disposition: form-data; name="title"

File Title
--boundary_string
Content-Disposition: form-data; name="description"

A brief description of the file
--boundary_string
Content-Disposition: form-data; name="file"; filename="example.txt"
Content-Type: text/plain

... file contents here ...
--boundary_string--

这里的“File Title”和“A brief description of the file”是与文件一同提交的额外字段数据。


在服务器端处理POST请求时,需要能够解析这种多部分格式的请求体来提取出各个字段的值以及文件内容。大多数现代Web框架(如Django、Express.js等)都提供了内置或第三方中间件来方便地处理multipart/form-data类型的文件上传。

另外,对于大文件的上传,还需要考虑以下几点:

  • 分块上传:为了支持大文件上传并提高稳定性,可以采用分块上传的方式,将文件分成多个小块分别发送,最后在服务器端合并。
  • 限制大小:服务器通常会设置最大允许上传文件的大小限制,以防止资源耗尽或其他安全风险。
  • 进度监控:在前端实现文件上传时,可以通过监听事件来实时显示上传进度,提升用户体验。

总之,POST请求体用于文件上传是一个相对复杂的过程,涉及到了HTTP协议、浏览器行为、服务器端编程等多个环节的协同工作。

1.3 PUT

  • 定义:PUT方法用于替换目标资源的所有当前表示。如果资源不存在,则服务器通常会创建该资源。与POST相比,PUT更强调幂等性,即多次执行同样的PUT操作,服务器端状态应该保持一致。
  • 特点
  • 客户端需提供完整的资源实体,服务器根据请求URI进行更新或创建。
  • 操作具有幂等性,多次执行同样的PUT请求应该产生相同的效果(除非资源本身发生了变化)。
  • 应用场景
  • 更新已存在的资源属性,例如修改用户个人资料。
  • 对于RESTful API设计,全量更新资源时使用。

1.4 DELETE

  • 定义:DELETE方法请求服务器删除指定的资源。
  • 特点
  • 删除操作无响应主体,仅通过HTTP响应头部和状态码告知结果。
  • 也具有幂等性,多次发出相同的DELETE请求都会删除同一个资源。
  • 应用场景
  • 删除某个特定资源,例如删除一个文章、账户或者订单。

1.5 其他方法

除了上述四种常见方法外,还有HEAD、OPTIONS、PATCH等:

  • HEAD类似于GET,但只返回响应头而不返回实体主体,常用来检查资源是否存在或获取资源的元信息。
  • OPTIONS允许客户端查看服务器支持哪些HTTP方法,用于服务发现或跨域预检。
  • PATCH用于对资源进行部分更新,仅提交需要更改的内容而不是整个资源。

2. 状态码含义及常见状态码分析

常见状态码:
  • 200 OK:请求成功,服务器已成功处理请求并返回资源。
  • 301 Moved Permanently:永久重定向,请求的资源已被分配了新的URL。
  • 302 Found:临时重定向,请求的资源临时位于其他URL下。
  • 400 Bad Request:客户端请求语法错误,服务器无法理解。
  • 401 Unauthorized:请求未经授权,需要提供认证信息(如API Key、Token等)。
  • 403 Forbidden:服务器理解请求,但拒绝提供服务,通常因为权限问题。
  • 404 Not Found:请求的资源在服务器上未找到。
  • 500 Internal Server Error:服务器遇到了意外情况,无法完成请求。
  • 503 Service Unavailable:服务器暂时无法处理请求,可能由于过载或维护。


3. 请求头与响应头关键字段解析

3.1 常见请求头:

  • User-Agent:标识客户端应用程序的信息,如浏览器类型、版本等。
  • Authorization:用于验证用户的凭证,例如Bearer Token或Basic Auth凭据。
  • Content-Type:指示请求主体的数据格式,如application/jsonmultipart/form-data等。
  • Accept:告诉服务器客户端接受哪些媒体类型作为响应。
  • Cookie:客户端发送到服务器的cookies信息,用于保持会话状态。

3.2 常见响应头:

  • Content-Type:同请求头,指示响应主体的数据格式。
  • Content-Length:响应主体内容的长度(字节数)。
  • Location:用于重定向的URL,在3xx状态码出现时使用。
  • Set-Cookie:服务器发给客户端的cookie信息,用于设置新会话或更新现有会话。
  • Cache-Control:控制缓存策略,如最大Age、是否允许缓存等。

4. HTTP缓存机制介绍


HTTP协议支持多种缓存机制来提高性能和减少网络带宽消耗,主要通过以下几种头部字段实现:

  • Expires:规定缓存过期时间,到了这个时间点后,缓存不再有效。

Cache-Control:更详细的缓存控制指令集,包括max-age、no-cache、public、private等。

  • max-age:设置缓存的最大生存时间(秒数)。
  • no-cache:要求验证缓存的有效性,即使有缓存也要与服务器确认。
  • public:指示响应可以被任何中间缓存存储。
  • private:指示响应只能被单个用户浏览器缓存,不能被共享缓存(如CDN)存储。
  • Last-Modified / If-Modified-Since:基于时间戳判断资源是否发生过改动。
  • ETag / If-None-Match:基于资源实体标签判断资源是否发生过变动。

HTTP缓存机制是Web性能优化中非常重要的一环,它允许浏览器、代理服务器以及其他中间件存储HTTP响应的副本,并在后续请求时使用这些副本来避免不必要的网络延迟。以下是一些核心的HTTP缓存机制以及相关的代码示例:

4.1. Expires

  • Expires头字段是一个绝对时间戳,表示缓存何时应该失效。
HTTP/1.1 200 OK
Content-Type: text/html
Cache-Control: max-age=3600
Expires: Wed, 01 Jan 2025 00:00:00 GMT

在上述响应头中,Cache-Control: max-age=3600 表示资源在接下来的一个小时内有效;而 Expires 设置了一个未来的时间点,过了这个时间点后,浏览器认为缓存过期。

4.2. Cache-Control

  • Cache-Control 是一个更强大的缓存控制策略,它可以设置多种指令如:max-age(相对有效期)、no-cache(需要验证缓存的有效性)、public(可以被任何缓存存储)和 private(只能被单个用户浏览器缓存)等。
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: max-age=300, public

4.3. Last-Modified / If-Modified-Since

  • 服务器通过 Last-Modified 头部提供资源最后修改的时间戳,客户端在下一次请求时带上 If-Modified-Since 头部,询问服务器资源是否自上次访问以来有变化。
// 首次请求响应:
HTTP/1.1 200 OK
Last-Modified: Sat, 23 Oct 2021 08:23:45 GMT

// 客户端再次请求时:
GET /resource HTTP/1.1
If-Modified-Since: Sat, 23 Oct 2021 08:23:45 GMT

如果资源未改变,服务器会返回304 Not Modified状态码,并且没有响应体,客户端则从缓存中获取内容。

4.4. ETag / If-None-Match

  • ETag(实体标签)是服务器为每个资源生成的一个唯一标识符,用来判断资源是否有变动。与 Last-Modified 类似,客户端会在下次请求时携带 If-None-Match 头部。
// 首次请求响应:
HTTP/1.1 200 OK
ETag: "ae3f7e9a"

// 客户端再次请求时:
GET /resource HTTP/1.1
If-None-Match: "ae3f7e9a"

如果ETag匹配,服务器同样会返回304状态码。


在实际编程中,开发者通常不需要直接编写处理这些头部信息的代码,因为现代Web框架或库(如Express.js、axios等)已经内置了对HTTP缓存机制的支持。不过,开发者可以根据业务需求配置响应头,以实现定制化的缓存策略。例如,在Node.js的Express框架中:

const express = require('express');
const app = express();

app.get('/resource', (req, res) => {
  // 假设这里的getResource函数从数据库获取数据
  const resource = getResource();
  
  // 设置缓存策略
  res.setHeader('Cache-Control', 'public, max-age=3600');
  res.setHeader('ETag', generateETag(resource)); // 假设有generateETag函数用于生成ETag
  
  res.json(resource);
});

5. HTTPS加密传输原理

HTTPS(Hypertext Transfer Protocol Secure)是在HTTP协议的基础上加入了SSL/TLS协议,为数据传输提供了安全保证。

  • 握手过程:客户端与服务器首先进行TLS握手阶段,协商加密算法、交换证书等,建立安全连接。
  • 证书验证:服务器向客户端发送其数字证书,客户端验证证书合法性,确保与正确的服务器通信。
  • 密钥交换:双方利用非对称加密算法(如RSA)生成会话密钥,用于后续的数据加密。
  • 加密传输:实际数据传输阶段,所有通信内容都采用协商好的会话密钥进行对称加密,确保数据在传输过程中不被窃取或篡改。

通过HTTPS,客户端和服务器之间建立起了一条安全通道,既保证了数据的机密性,又确保了数据的完整性,同时还能够防止中间人攻击。

相关文章
|
2月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
538 0
|
23天前
|
域名解析 网络协议 网络安全
SSL证书验证全攻略:DNS/HTTP/手动解析怎么选?
SSL证书在网络安全中至关重要,1Panel提供三种验证方式:DNS验证、HTTP验证和手动解析。DNS验证便捷,适合CDN网站;HTTP验证快速,需服务器在线;手动解析灵活,但操作复杂。根据需求选择合适确认方式,定期检查证书状态。
255 2
|
1月前
|
缓存 搜索推荐 CDN
HTTP缓存策略的区别和解决的问题
总的来说,HTTP缓存策略是一种权衡,需要根据具体的应用场景和需求来选择合适的策略。理解和掌握这些策略,可以帮助我们更好地优化网页性能,提高用户的浏览体验。
58 11
|
3月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
350 29
|
2月前
|
缓存 NoSQL Go
【LeetCode 热题100】146:LRU 缓存(详细解析)(Go语言版)
本文详细解析了力扣 146 题——LRU 缓存机制的实现方法。通过结合哈希表与双向链表,确保 `get` 和 `put` 操作均在 O(1) 时间内完成。哈希表用于快速查找,双向链表记录访问顺序,支持最近使用数据的高效更新与淘汰。代码以 Go 语言实现,结构清晰,涵盖核心操作如节点移动、插入与删除。此题为面试高频考点,适用于数据缓存、页面置换等场景,掌握后可加深对缓存策略的理解。
116 4
|
4月前
|
机器学习/深度学习 存储 缓存
LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
186 16
LLM高效推理:KV缓存与分页注意力机制深度解析
|
4月前
|
缓存 安全 网络安全
代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?
本文详细介绍了HTTP、HTTPS和SOCKS5三种代理协议的特点、优缺点以及适用场景。通过对比和分析,可以根据具体需求选择最合适的代理协议。希望本文能帮助您更好地理解和应用代理协议,提高网络应用的安全性和性能。
196 17
|
4月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
106 0
【赵渝强老师】Spark RDD的缓存机制
|
5月前
|
安全 网络协议 网络安全
解析HTTP代理服务器不稳定致使掉线的关键原因
随着数字化发展,网络安全和隐私保护成为核心需求。HTTP代理服务器掉线原因主要包括:1. 网络问题,如本地网络不稳定、路由复杂;2. 服务器质量差、IP资源不稳定;3. 用户配置错误、超时或请求频率异常;4. IP失效或协议不兼容。这些问题会影响连接稳定性。
156 8
|
Web App开发 存储 前端开发
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
      前段时间公司hadoop集群宕机,发现是namenode磁盘满了, 清理出部分空间后,重启集群时,重启失败。 又发现集群Secondary namenode 服务也恰恰坏掉,导致所有的操作log持续写入edits.new 文件,等集群宕机的时候文件大小已经达到了丧心病狂的70G+..重启集群报错 加载edits文件失败。
1005 0

推荐镜像

更多
  • DNS