matlab使用贝叶斯优化的深度学习

简介: matlab使用贝叶斯优化的深度学习

此示例说明如何将贝叶斯优化应用于深度学习,以及如何为卷积神经网络找到最佳网络超参数和训练选项。

要训练深度神经网络,必须指定神经网络架构以及训练算法的选项。选择和调整这些超参数可能很困难并且需要时间。贝叶斯优化是一种非常适合用于优化分类和回归模型的超参数的算法。

 

准备数据

下载CIFAR-10数据集[1]。该数据集包含60,000张图像,每个图像的大小为32 x 32和三个颜色通道(RGB)。整个数据集的大小为175 MB。

加载CIFAR-10数据集作为训练图像和标签,并测试图像和标签。

[XTrain,YTrain,XTest,YTest] = loadCIFARData(datadir);

idx = randperm(numel(YTest),5000);
XValidation = XTest(:,:,:,idx);
XTest(:,:,:,idx) = [];
YValidation = YTest(idx);
YTest(idx) = [];

您可以使用以下代码显示训练图像的样本。

figure;
idx = randperm(numel(YTrain),20);
for i = 1:numel(idx)
    subplot(4,5,i);
    imshow(XTrain(:,:,:,idx(i)));
end


选择要优化的变量

选择要使用贝叶斯优化进行优化的变量,并指定要搜索的范围。此外,指定变量是否为整数以及是否在对数空间中搜索区间。优化以下变量:

  • 网络部分的深度。此参数控制网络的深度。该网络具有三个部分,每个部分具有SectionDepth相同的卷积层。因此,卷积层的总数为3*SectionDepth。脚本后面的目标函数将每一层中的卷积过滤器数量与成正比1/sqrt(SectionDepth)。结果,对于不同的截面深度,每次迭代的参数数量和所需的计算量大致相同。
  • 最佳学习率取决于您的数据以及您正在训练的网络。
  • 随机梯度下降动量。
  • L2正则化强度。
optimVars = [
    optimizableVariable('SectionDepth',[1 3],'Type','integer')
    optimizableVariable('InitialLearnRate',[1e-2 1],'Transform','log')
    optimizableVariable('Momentum',[0.8 0.98])
    optimizableVariable('L2Regularization',[1e-10 1e-2],'Transform','log')];

执行贝叶斯优化

使用训练和验证数据作为输入,为贝叶斯优化器创建目标函数。目标函数训练卷积神经网络,并在验证集上返回分类误差。

ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation);

通过最小化验证集上的分类误差来执行贝叶斯优化。为了充分利用贝叶斯优化的功能,您应该至少执行30个目标函数评估。

每个网络完成训练后,bayesopt将结果打印到命令窗口。bayesopt然后该函数返回中的文件名BayesObject.UserDataTrace。目标函数将训练有素的网络保存到磁盘,并将文件名返回给bayesopt


|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | SectionDepth | InitialLearn-|     Momentum | L2Regulariza-|
|      | result |             | runtime     | (observed)  | (estim.)    |              | Rate         |              | tion         |
|===================================================================================================================================|
|    1 | Best   |        0.19 |        2201 |        0.19 |        0.19 |            3 |     0.012114 |       0.8354 |    0.0010624 |

|    2 | Accept |      0.3224 |      1734.1 |        0.19 |     0.19636 |            1 |     0.066481 |      0.88231 |    0.0026626 |

|    3 | Accept |      0.2076 |      1688.7 |        0.19 |     0.19374 |            2 |     0.022346 |      0.91149 |    8.242e-10 |

|    4 | Accept |      0.1908 |      2167.2 |        0.19 |      0.1904 |            3 |      0.97586 |      0.83613 |   4.5143e-08 |

|    5 | Accept |      0.1972 |      2157.4 |        0.19 |     0.19274 |            3 |      0.21193 |      0.97995 |   1.4691e-05 |

|    6 | Accept |      0.2594 |      2152.8 |        0.19 |        0.19 |            3 |      0.98723 |      0.97931 |   2.4847e-10 |

|    7 | Best   |      0.1882 |      2257.5 |      0.1882 |     0.18819 |            3 |       0.1722 |       0.8019 |   4.2149e-06 |

|    8 | Accept |      0.8116 |      1989.7 |      0.1882 |     0.18818 |            3 |      0.42085 |      0.95355 |    0.0092026 |

|    9 | Accept |      0.1986 |        1836 |      0.1882 |     0.18821 |            2 |     0.030291 |      0.94711 |   2.5062e-05 |

|   10 | Accept |      0.2146 |      1909.4 |      0.1882 |     0.18816 |            2 |     0.013379 |       0.8785 |   7.6354e-09 |

|   11 | Accept |      0.2194 |        1562 |      0.1882 |     0.18815 |            1 |      0.14682 |      0.86272 |   8.6242e-09 |

|   12 | Accept |      0.2246 |      1591.2 |      0.1882 |     0.18813 |            1 |      0.70438 |      0.82809 |   1.0102e-06 |

|   13 | Accept |      0.2648 |      1621.8 |      0.1882 |     0.18824 |            1 |     0.010109 |      0.89989 |   1.0481e-10 |

|   14 | Accept |      0.2222 |        1562 |      0.1882 |     0.18812 |            1 |      0.11058 |      0.97432 |   2.4101e-07 |

|   15 | Accept |      0.2364 |      1625.7 |      0.1882 |     0.18813 |            1 |     0.079381 |       0.8292 |   2.6722e-05 |

|   16 | Accept |        0.26 |      1706.2 |      0.1882 |     0.18815 |            1 |     0.010041 |      0.96229 |   1.1066e-05 |

|   17 | Accept |      0.1986 |      2188.3 |      0.1882 |     0.18635 |            3 |      0.35949 |      0.97824 |    3.153e-07 |

|   18 | Accept |      0.1938 |      2169.6 |      0.1882 |     0.18817 |            3 |     0.024365 |      0.88464 |   0.00024507 |

|   19 | Accept |      0.3588 |      1713.7 |      0.1882 |     0.18216 |            1 |     0.010177 |      0.89427 |    0.0090342 |

|   20 | Accept |      0.2224 |      1721.4 |      0.1882 |     0.18193 |            1 |      0.09804 |      0.97947 |   1.0727e-10 |

|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | SectionDepth | InitialLearn-|     Momentum | L2Regulariza-|
|      | result |             | runtime     | (observed)  | (estim.)    |              | Rate         |              | tion         |
|===================================================================================================================================|
|   21 | Accept |      0.1904 |      2184.7 |      0.1882 |     0.18498 |            3 |     0.017697 |      0.95057 |   0.00022247 |

|   22 | Accept |      0.1928 |      2184.4 |      0.1882 |     0.18527 |            3 |      0.06813 |       0.9027 |   1.3521e-09 |

|   23 | Accept |      0.1934 |      2183.6 |      0.1882 |      0.1882 |            3 |     0.018269 |      0.90432 |    0.0003573 |

|   24 | Accept |       0.303 |      1707.9 |      0.1882 |     0.18809 |            1 |     0.010157 |      0.88226 |   0.00088737 |

|   25 | Accept |       0.194 |      2189.1 |      0.1882 |     0.18808 |            3 |     0.019354 |      0.94156 |   9.6197e-07 |

|   26 | Accept |      0.2192 |      1752.2 |      0.1882 |     0.18809 |            1 |      0.99324 |      0.91165 |   1.1521e-08 |

|   27 | Accept |      0.1918 |        2185 |      0.1882 |     0.18813 |            3 |      0.05292 |       0.8689 |   1.2449e-05 |
__________________________________________________________

Optimization completed.
MaxTime of 50400 seconds reached.
Total function evaluations: 27
Total elapsed time: 51962.3666 seconds.
Total objective function evaluation time: 51942.8833

Best observed feasible point:
    SectionDepth    InitialLearnRate    Momentum    L2Regularization
    ____________    ________________    ________    ________________

         3               0.1722          0.8019        4.2149e-06

Observed objective function value = 0.1882
Estimated objective function value = 0.18813
Function evaluation time = 2257.4627

Best estimated feasible point (according to models):
    SectionDepth    InitialLearnRate    Momentum    L2Regularization
    ____________    ________________    ________    ________________

         3               0.1722          0.8019        4.2149e-06

Estimated objective function value = 0.18813
Estimated function evaluation time = 2166.2402

评估最终网络

加载优化中发现的最佳网络及其验证准确性。

valError = 0.1882


预测测试集的标签并计算测试误差。将测试集中每个图像的分类视为具有一定成功概率的独立事件,这意味着错误分类的图像数量遵循二项式分布。使用它来计算标准误差(testErrorSE)和testError95CI广义误差率的大约95%置信区间()。这种方法通常称为Wald方法

testError = 0.1864

 
testError95CI = 1×2

    0.1756    0.1972

绘制混淆矩阵以获取测试数据。通过使用列和行摘要显示每个类的精度和召回率。


您可以使用以下代码显示一些测试图像及其预测的类以及这些类的概率。


优化目标函数

定义用于优化的目标函数。

定义卷积神经网络架构。

  • 在卷积层上添加填充,以便空间输出大小始终与输入大小相同。
  • 每次使用最大池化层对空间维度进行2倍的下采样时,将过滤器的数量增加2倍。这样做可确保每个卷积层所需的计算量大致相同。
  • 选择与成正比的滤波器数量,以1/sqrt(SectionDepth)使不同深度的网络具有大致相同数量的参数,并且每次迭代所需的计算量大致相同。要增加网络参数的数量和整体网络灵活性,请增加numF。要训练更深的网络,请更改SectionDepth变量的范围。
  • 使用convBlock(filterSize,numFilters,numConvLayers)创建的块numConvLayers卷积层,每个具有指定filterSizenumFilters过滤器,并且每个随后分批正常化层和RELU层。该convBlock函数在本示例的末尾定义。

指定验证数据,然后选择一个'ValidationFrequency'值,以便trainNetwork每个时期对网络进行一次验证。训练固定的时期数,并在最后一个时期将学习率降低10倍。这减少了参数更新的噪音,并使网络参数的沉降更接近损耗函数的最小值。

使用数据增强可沿垂直轴随机翻转训练图像,并将它们随机水平和垂直转换为四个像素。

训练网络并在训练过程中绘制训练进度。


在验证集上评估经过训练的网络,计算预测的图像标签,并在验证数据上计算错误率。

创建一个包含验证错误的文件名,然后将网络,验证错误和培训选项保存到磁盘。目标函数fileName作为输出参数bayesopt返回,并返回中的所有文件名BayesObject.UserDataTrace

convBlock函数创建一个numConvLayers卷积层块,每个卷积层都有一个指定的filterSizenumFilters过滤器,每个卷积层后面都有一个批处理归一化层和一个ReLU层。

参考文献

[1]克里热夫斯基,亚历克斯。“从微小的图像中学习多层功能。” (2009)。

相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
1天前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
15 6
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1天前
|
机器学习/深度学习 自然语言处理 监控
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
|
6天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
69 40

热门文章

最新文章