考虑时空相关性的风电功率预测误差建模与分析(matlab程序)

简介: 考虑时空相关性的风电功率预测误差建模与分析(matlab程序)

1 主要内容

这个程序参考《考虑时空相关性的风电功率预测误差建模与分析》,今天把这个程序分享给大家,大家可以学习一下画图技巧以及数据分析方面的知识。

2 部分程序

%% 清空环境变量
clc
clear all;
%% 提取数据 
data=xlsread('实验数据.xlsx',1);
%% 提取对应各段中点位置处的误差值
error_fenbu_1=[];
for i=1:size(data,1)
   if data(i,3)>=220 && data(i,3)<=240
        error_fenbu_1(i)=data(i,8);
   else
       error_fenbu_1(i)=0;
   end
end
error_1=error_fenbu_1(find(error_fenbu_1~=0));
error_fenbu_2=[];
for i=1:size(data,1)
    if data(i,3)>=670&&data(i,3)<=690;
        error_fenbu_2(i)=data(i,8);
      else error_fenbu_2(i)=0;
   end
end  
error_2=error_fenbu_2(find(error_fenbu_2~=0));
error_fenbu_3=[];
for i=1:size(data,1)
    if data(i,3)>=1128 && data(i,3)<=1148;
        error_fenbu_3(i)=data(i,8);
     else error_fenbu_3(i)=0;
   end
end
error_3=error_fenbu_3(find(error_fenbu_3~=0));
error_fenbu_4=[];
for i=1:size(data,1)
    if data(i,3)>=1585&&data(i,3)<=1605;
        error_fenbu_4(i)=data(i,8);
       else error_fenbu_4(i)=0;
   end
end  
error_4=error_fenbu_4(find(error_fenbu_4~=0));
error_fenbu_5=[];
for i=1:size(data,1) 
   if data(i,3)>=2040&&data(i,3)<=2060;
        error_fenbu_5(i)=data(i,8);
   else   error_fenbu_5(i)=0;
   end
end
error_5=error_fenbu_5(find(error_fenbu_5~=0));
error_fenbu_6=[];
for i=1:size(data,1) 
   if data(i,3)>=2495 && data(i,3)<=2515;
        error_fenbu_6(i)=data(i,8);
        else   error_fenbu_6(i)=0;
   end
end
error_6=error_fenbu_6(find(error_fenbu_6~=0));
error_fenbu_7=[];
for i=1:size(data,1)  
    if data(i,3)>=2950&&data(i,3)<=2970;
        error_fenbu_7(i)=data(i,8);
     else   error_fenbu_7(i)=0;
   end
end 
error_7=error_fenbu_7(find(error_fenbu_7~=0));
error_fenbu_8=[];
for i=1:size(data,1)  
    if data(i,3)>=3406 && data(i,3)<=3426;
        error_fenbu_8(i)=data(i,8);   
        else   error_fenbu_8(i)=0;
   end
end 
error_8=error_fenbu_8(find(error_fenbu_8~=0));
error_fenbu_9=[];
for i=1:size(data,1)  
   if data(i,3)>=3860&&data(i,3)<=3880;
        error_fenbu_9(i)=data(i,8); 
        else   error_fenbu_9(i)=0;
   end
end 
error_9=error_fenbu_9(find(error_fenbu_9~=0));
error_fenbu_10=[];
for i=1:size(data,1)  
    if data(i,3)>=4317&&data(i,3)<=4337;
        error_fenbu_10(i)=data(i,8); 
        else   error_fenbu_10(i)=0;
   end
end 
error_10=error_fenbu_10(find(error_fenbu_10~=0));
%% 拟合分布—求取t分布参数进行拟合
error_values=-3000:0.5:3000;
pd_1= fitdist(error_1','tLocationScale');
desity_1= pdf(pd_1,error_values);
pd_2= fitdist(error_2'
,
'tLocationScale'
);desity_2= pdf(pd_2,error_values);
pd_3= fitdist(error_3','tLocationScale');
desity_3= pdf(pd_3,error_values);
pd_4= fitdist(error_4'
,
'tLocationScale'
);desity_4= pdf(pd_4,error_values);
pd_5= fitdist(error_5','tLocationScale');
相关文章
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
18天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
2月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
59 0
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
191 19
|
3月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
4月前
|
算法 Perl
【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
本文介绍了基于MATLAB的多模光纤模场分布仿真分析,详细阐述了多模光纤的概念、实现方法、仿真技术,并利用模式耦合方程分析方法,通过理论和仿真模型设计,展示了不同模式下的光场分布及其受光纤参数影响的分析结果。
167 4
【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
|
3月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
3月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
4月前
|
算法 测试技术 SoC
基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真
本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。

热门文章

最新文章

下一篇
DataWorks